Term Rewriting System R:
[y, x]
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, x, y) -> mod(minus(x, y), y)
ifmod(false, s(x), s(y)) -> s(x)

Innermost Termination of R to be shown.

`   R`
`     ↳Dependency Pair Analysis`

R contains the following Dependency Pairs:

LE(s(x), s(y)) -> LE(x, y)
MINUS(s(x), s(y)) -> MINUS(x, y)
MOD(s(x), s(y)) -> IFMOD(le(y, x), s(x), s(y))
MOD(s(x), s(y)) -> LE(y, x)
IFMOD(true, x, y) -> MOD(minus(x, y), y)
IFMOD(true, x, y) -> MINUS(x, y)

Furthermore, R contains three SCCs.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polynomial Ordering`
`       →DP Problem 2`
`         ↳Polo`
`       →DP Problem 3`
`         ↳Nar`

Dependency Pair:

LE(s(x), s(y)) -> LE(x, y)

Rules:

le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, x, y) -> mod(minus(x, y), y)
ifmod(false, s(x), s(y)) -> s(x)

Strategy:

innermost

The following dependency pair can be strictly oriented:

LE(s(x), s(y)) -> LE(x, y)

There are no usable rules for innermost w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(LE(x1, x2)) =  x1 POL(s(x1)) =  1 + x1

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`           →DP Problem 4`
`             ↳Dependency Graph`
`       →DP Problem 2`
`         ↳Polo`
`       →DP Problem 3`
`         ↳Nar`

Dependency Pair:

Rules:

le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, x, y) -> mod(minus(x, y), y)
ifmod(false, s(x), s(y)) -> s(x)

Strategy:

innermost

Using the Dependency Graph resulted in no new DP problems.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polynomial Ordering`
`       →DP Problem 3`
`         ↳Nar`

Dependency Pair:

MINUS(s(x), s(y)) -> MINUS(x, y)

Rules:

le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, x, y) -> mod(minus(x, y), y)
ifmod(false, s(x), s(y)) -> s(x)

Strategy:

innermost

The following dependency pair can be strictly oriented:

MINUS(s(x), s(y)) -> MINUS(x, y)

There are no usable rules for innermost w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(MINUS(x1, x2)) =  x1 POL(s(x1)) =  1 + x1

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polo`
`           →DP Problem 5`
`             ↳Dependency Graph`
`       →DP Problem 3`
`         ↳Nar`

Dependency Pair:

Rules:

le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, x, y) -> mod(minus(x, y), y)
ifmod(false, s(x), s(y)) -> s(x)

Strategy:

innermost

Using the Dependency Graph resulted in no new DP problems.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polo`
`       →DP Problem 3`
`         ↳Narrowing Transformation`

Dependency Pairs:

IFMOD(true, x, y) -> MOD(minus(x, y), y)
MOD(s(x), s(y)) -> IFMOD(le(y, x), s(x), s(y))

Rules:

le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, x, y) -> mod(minus(x, y), y)
ifmod(false, s(x), s(y)) -> s(x)

Strategy:

innermost

On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

MOD(s(x), s(y)) -> IFMOD(le(y, x), s(x), s(y))
three new Dependency Pairs are created:

MOD(s(x'), s(0)) -> IFMOD(true, s(x'), s(0))
MOD(s(0), s(s(x''))) -> IFMOD(false, s(0), s(s(x'')))
MOD(s(s(y'')), s(s(x''))) -> IFMOD(le(x'', y''), s(s(y'')), s(s(x'')))

The transformation is resulting in one new DP problem:

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polo`
`       →DP Problem 3`
`         ↳Nar`
`           →DP Problem 6`
`             ↳Narrowing Transformation`

Dependency Pairs:

MOD(s(s(y'')), s(s(x''))) -> IFMOD(le(x'', y''), s(s(y'')), s(s(x'')))
MOD(s(x'), s(0)) -> IFMOD(true, s(x'), s(0))
IFMOD(true, x, y) -> MOD(minus(x, y), y)

Rules:

le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, x, y) -> mod(minus(x, y), y)
ifmod(false, s(x), s(y)) -> s(x)

Strategy:

innermost

On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

IFMOD(true, x, y) -> MOD(minus(x, y), y)
two new Dependency Pairs are created:

IFMOD(true, x'', 0) -> MOD(x'', 0)
IFMOD(true, s(x''), s(y'')) -> MOD(minus(x'', y''), s(y''))

The transformation is resulting in one new DP problem:

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polo`
`       →DP Problem 3`
`         ↳Nar`
`           →DP Problem 6`
`             ↳Nar`
`             ...`
`               →DP Problem 7`
`                 ↳Instantiation Transformation`

Dependency Pairs:

MOD(s(x'), s(0)) -> IFMOD(true, s(x'), s(0))
IFMOD(true, s(x''), s(y'')) -> MOD(minus(x'', y''), s(y''))
MOD(s(s(y'')), s(s(x''))) -> IFMOD(le(x'', y''), s(s(y'')), s(s(x'')))

Rules:

le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, x, y) -> mod(minus(x, y), y)
ifmod(false, s(x), s(y)) -> s(x)

Strategy:

innermost

On this DP problem, an Instantiation SCC transformation can be performed.
As a result of transforming the rule

IFMOD(true, s(x''), s(y'')) -> MOD(minus(x'', y''), s(y''))
two new Dependency Pairs are created:

IFMOD(true, s(x''''), s(0)) -> MOD(minus(x'''', 0), s(0))
IFMOD(true, s(s(y'''')), s(s(x''''))) -> MOD(minus(s(y''''), s(x'''')), s(s(x'''')))

The transformation is resulting in two new DP problems:

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polo`
`       →DP Problem 3`
`         ↳Nar`
`           →DP Problem 6`
`             ↳Nar`
`             ...`
`               →DP Problem 8`
`                 ↳Rewriting Transformation`

Dependency Pairs:

IFMOD(true, s(x''''), s(0)) -> MOD(minus(x'''', 0), s(0))
MOD(s(x'), s(0)) -> IFMOD(true, s(x'), s(0))

Rules:

le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, x, y) -> mod(minus(x, y), y)
ifmod(false, s(x), s(y)) -> s(x)

Strategy:

innermost

On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

IFMOD(true, s(x''''), s(0)) -> MOD(minus(x'''', 0), s(0))
one new Dependency Pair is created:

IFMOD(true, s(x''''), s(0)) -> MOD(x'''', s(0))

The transformation is resulting in one new DP problem:

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polo`
`       →DP Problem 3`
`         ↳Nar`
`           →DP Problem 6`
`             ↳Nar`
`             ...`
`               →DP Problem 10`
`                 ↳Forward Instantiation Transformation`

Dependency Pairs:

IFMOD(true, s(x''''), s(0)) -> MOD(x'''', s(0))
MOD(s(x'), s(0)) -> IFMOD(true, s(x'), s(0))

Rules:

le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, x, y) -> mod(minus(x, y), y)
ifmod(false, s(x), s(y)) -> s(x)

Strategy:

innermost

On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

IFMOD(true, s(x''''), s(0)) -> MOD(x'''', s(0))
one new Dependency Pair is created:

IFMOD(true, s(s(x''')), s(0)) -> MOD(s(x'''), s(0))

The transformation is resulting in one new DP problem:

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polo`
`       →DP Problem 3`
`         ↳Nar`
`           →DP Problem 6`
`             ↳Nar`
`             ...`
`               →DP Problem 12`
`                 ↳Forward Instantiation Transformation`

Dependency Pairs:

IFMOD(true, s(s(x''')), s(0)) -> MOD(s(x'''), s(0))
MOD(s(x'), s(0)) -> IFMOD(true, s(x'), s(0))

Rules:

le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, x, y) -> mod(minus(x, y), y)
ifmod(false, s(x), s(y)) -> s(x)

Strategy:

innermost

On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

MOD(s(x'), s(0)) -> IFMOD(true, s(x'), s(0))
one new Dependency Pair is created:

MOD(s(s(x''''')), s(0)) -> IFMOD(true, s(s(x''''')), s(0))

The transformation is resulting in one new DP problem:

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polo`
`       →DP Problem 3`
`         ↳Nar`
`           →DP Problem 6`
`             ↳Nar`
`             ...`
`               →DP Problem 13`
`                 ↳Polynomial Ordering`

Dependency Pairs:

MOD(s(s(x''''')), s(0)) -> IFMOD(true, s(s(x''''')), s(0))
IFMOD(true, s(s(x''')), s(0)) -> MOD(s(x'''), s(0))

Rules:

le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, x, y) -> mod(minus(x, y), y)
ifmod(false, s(x), s(y)) -> s(x)

Strategy:

innermost

The following dependency pair can be strictly oriented:

IFMOD(true, s(s(x''')), s(0)) -> MOD(s(x'''), s(0))

There are no usable rules for innermost w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(0) =  0 POL(MOD(x1, x2)) =  x1 POL(true) =  0 POL(s(x1)) =  1 + x1 POL(IF_MOD(x1, x2, x3)) =  x2

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polo`
`       →DP Problem 3`
`         ↳Nar`
`           →DP Problem 6`
`             ↳Nar`
`             ...`
`               →DP Problem 15`
`                 ↳Dependency Graph`

Dependency Pair:

MOD(s(s(x''''')), s(0)) -> IFMOD(true, s(s(x''''')), s(0))

Rules:

le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, x, y) -> mod(minus(x, y), y)
ifmod(false, s(x), s(y)) -> s(x)

Strategy:

innermost

Using the Dependency Graph resulted in no new DP problems.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polo`
`       →DP Problem 3`
`         ↳Nar`
`           →DP Problem 6`
`             ↳Nar`
`             ...`
`               →DP Problem 9`
`                 ↳Rewriting Transformation`

Dependency Pairs:

IFMOD(true, s(s(y'''')), s(s(x''''))) -> MOD(minus(s(y''''), s(x'''')), s(s(x'''')))
MOD(s(s(y'')), s(s(x''))) -> IFMOD(le(x'', y''), s(s(y'')), s(s(x'')))

Rules:

le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, x, y) -> mod(minus(x, y), y)
ifmod(false, s(x), s(y)) -> s(x)

Strategy:

innermost

On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

IFMOD(true, s(s(y'''')), s(s(x''''))) -> MOD(minus(s(y''''), s(x'''')), s(s(x'''')))
one new Dependency Pair is created:

IFMOD(true, s(s(y'''')), s(s(x''''))) -> MOD(minus(y'''', x''''), s(s(x'''')))

The transformation is resulting in one new DP problem:

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polo`
`       →DP Problem 3`
`         ↳Nar`
`           →DP Problem 6`
`             ↳Nar`
`             ...`
`               →DP Problem 11`
`                 ↳Polynomial Ordering`

Dependency Pairs:

IFMOD(true, s(s(y'''')), s(s(x''''))) -> MOD(minus(y'''', x''''), s(s(x'''')))
MOD(s(s(y'')), s(s(x''))) -> IFMOD(le(x'', y''), s(s(y'')), s(s(x'')))

Rules:

le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, x, y) -> mod(minus(x, y), y)
ifmod(false, s(x), s(y)) -> s(x)

Strategy:

innermost

The following dependency pair can be strictly oriented:

IFMOD(true, s(s(y'''')), s(s(x''''))) -> MOD(minus(y'''', x''''), s(s(x'''')))

Additionally, the following usable rules for innermost w.r.t. to the implicit AFS can be oriented:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(0) =  0 POL(false) =  0 POL(MOD(x1, x2)) =  x1 POL(minus(x1, x2)) =  x1 POL(true) =  0 POL(s(x1)) =  1 + x1 POL(IF_MOD(x1, x2, x3)) =  x2 POL(le(x1, x2)) =  0

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polo`
`       →DP Problem 3`
`         ↳Nar`
`           →DP Problem 6`
`             ↳Nar`
`             ...`
`               →DP Problem 14`
`                 ↳Dependency Graph`

Dependency Pair:

MOD(s(s(y'')), s(s(x''))) -> IFMOD(le(x'', y''), s(s(y'')), s(s(x'')))

Rules:

le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, x, y) -> mod(minus(x, y), y)
ifmod(false, s(x), s(y)) -> s(x)

Strategy:

innermost

Using the Dependency Graph resulted in no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:00 minutes