Term Rewriting System R:
[y, x]
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, x, y) -> mod(minus(x, y), y)
ifmod(false, s(x), s(y)) -> s(x)

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

LE(s(x), s(y)) -> LE(x, y)
MINUS(s(x), s(y)) -> MINUS(x, y)
MOD(s(x), s(y)) -> IFMOD(le(y, x), s(x), s(y))
MOD(s(x), s(y)) -> LE(y, x)
IFMOD(true, x, y) -> MOD(minus(x, y), y)
IFMOD(true, x, y) -> MINUS(x, y)

Furthermore, R contains three SCCs.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering
       →DP Problem 2
AFS
       →DP Problem 3
Remaining


Dependency Pair:

LE(s(x), s(y)) -> LE(x, y)


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, x, y) -> mod(minus(x, y), y)
ifmod(false, s(x), s(y)) -> s(x)


Strategy:

innermost




The following dependency pair can be strictly oriented:

LE(s(x), s(y)) -> LE(x, y)


There are no usable rules for innermost that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
LE(x1, x2) -> LE(x1, x2)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 4
Dependency Graph
       →DP Problem 2
AFS
       →DP Problem 3
Remaining


Dependency Pair:


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, x, y) -> mod(minus(x, y), y)
ifmod(false, s(x), s(y)) -> s(x)


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
Argument Filtering and Ordering
       →DP Problem 3
Remaining


Dependency Pair:

MINUS(s(x), s(y)) -> MINUS(x, y)


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, x, y) -> mod(minus(x, y), y)
ifmod(false, s(x), s(y)) -> s(x)


Strategy:

innermost




The following dependency pair can be strictly oriented:

MINUS(s(x), s(y)) -> MINUS(x, y)


There are no usable rules for innermost that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
MINUS(x1, x2) -> MINUS(x1, x2)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
           →DP Problem 5
Dependency Graph
       →DP Problem 3
Remaining


Dependency Pair:


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, x, y) -> mod(minus(x, y), y)
ifmod(false, s(x), s(y)) -> s(x)


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
Remaining Obligation(s)




The following remains to be proven:
Dependency Pairs:

IFMOD(true, x, y) -> MOD(minus(x, y), y)
MOD(s(x), s(y)) -> IFMOD(le(y, x), s(x), s(y))


Rules:


le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, x, y) -> mod(minus(x, y), y)
ifmod(false, s(x), s(y)) -> s(x)


Strategy:

innermost



Innermost Termination of R could not be shown.
Duration:
0:00 minutes