R
↳Dependency Pair Analysis
LE(s(x), s(y)) -> LE(x, y)
MINUS(s(x), s(y)) -> MINUS(x, y)
MOD(s(x), s(y)) -> IFMOD(le(y, x), s(x), s(y))
MOD(s(x), s(y)) -> LE(y, x)
IFMOD(true, x, y) -> MOD(minus(x, y), y)
IFMOD(true, x, y) -> MINUS(x, y)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
LE(s(x), s(y)) -> LE(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, x, y) -> mod(minus(x, y), y)
ifmod(false, s(x), s(y)) -> s(x)
innermost
one new Dependency Pair is created:
LE(s(x), s(y)) -> LE(x, y)
LE(s(s(x'')), s(s(y''))) -> LE(s(x''), s(y''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
LE(s(s(x'')), s(s(y''))) -> LE(s(x''), s(y''))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, x, y) -> mod(minus(x, y), y)
ifmod(false, s(x), s(y)) -> s(x)
innermost
one new Dependency Pair is created:
LE(s(s(x'')), s(s(y''))) -> LE(s(x''), s(y''))
LE(s(s(s(x''''))), s(s(s(y'''')))) -> LE(s(s(x'''')), s(s(y'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳FwdInst
...
→DP Problem 5
↳Argument Filtering and Ordering
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
LE(s(s(s(x''''))), s(s(s(y'''')))) -> LE(s(s(x'''')), s(s(y'''')))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, x, y) -> mod(minus(x, y), y)
ifmod(false, s(x), s(y)) -> s(x)
innermost
LE(s(s(s(x''''))), s(s(s(y'''')))) -> LE(s(s(x'''')), s(s(y'''')))
LE(x1, x2) -> LE(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳FwdInst
...
→DP Problem 6
↳Dependency Graph
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, x, y) -> mod(minus(x, y), y)
ifmod(false, s(x), s(y)) -> s(x)
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Forward Instantiation Transformation
→DP Problem 3
↳Nar
MINUS(s(x), s(y)) -> MINUS(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, x, y) -> mod(minus(x, y), y)
ifmod(false, s(x), s(y)) -> s(x)
innermost
one new Dependency Pair is created:
MINUS(s(x), s(y)) -> MINUS(x, y)
MINUS(s(s(x'')), s(s(y''))) -> MINUS(s(x''), s(y''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 7
↳Forward Instantiation Transformation
→DP Problem 3
↳Nar
MINUS(s(s(x'')), s(s(y''))) -> MINUS(s(x''), s(y''))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, x, y) -> mod(minus(x, y), y)
ifmod(false, s(x), s(y)) -> s(x)
innermost
one new Dependency Pair is created:
MINUS(s(s(x'')), s(s(y''))) -> MINUS(s(x''), s(y''))
MINUS(s(s(s(x''''))), s(s(s(y'''')))) -> MINUS(s(s(x'''')), s(s(y'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 7
↳FwdInst
...
→DP Problem 8
↳Argument Filtering and Ordering
→DP Problem 3
↳Nar
MINUS(s(s(s(x''''))), s(s(s(y'''')))) -> MINUS(s(s(x'''')), s(s(y'''')))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, x, y) -> mod(minus(x, y), y)
ifmod(false, s(x), s(y)) -> s(x)
innermost
MINUS(s(s(s(x''''))), s(s(s(y'''')))) -> MINUS(s(s(x'''')), s(s(y'''')))
MINUS(x1, x2) -> MINUS(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 7
↳FwdInst
...
→DP Problem 9
↳Dependency Graph
→DP Problem 3
↳Nar
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, x, y) -> mod(minus(x, y), y)
ifmod(false, s(x), s(y)) -> s(x)
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Narrowing Transformation
IFMOD(true, x, y) -> MOD(minus(x, y), y)
MOD(s(x), s(y)) -> IFMOD(le(y, x), s(x), s(y))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, x, y) -> mod(minus(x, y), y)
ifmod(false, s(x), s(y)) -> s(x)
innermost
three new Dependency Pairs are created:
MOD(s(x), s(y)) -> IFMOD(le(y, x), s(x), s(y))
MOD(s(x'), s(0)) -> IFMOD(true, s(x'), s(0))
MOD(s(0), s(s(x''))) -> IFMOD(false, s(0), s(s(x'')))
MOD(s(s(y'')), s(s(x''))) -> IFMOD(le(x'', y''), s(s(y'')), s(s(x'')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Narrowing Transformation
MOD(s(s(y'')), s(s(x''))) -> IFMOD(le(x'', y''), s(s(y'')), s(s(x'')))
MOD(s(x'), s(0)) -> IFMOD(true, s(x'), s(0))
IFMOD(true, x, y) -> MOD(minus(x, y), y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, x, y) -> mod(minus(x, y), y)
ifmod(false, s(x), s(y)) -> s(x)
innermost
two new Dependency Pairs are created:
IFMOD(true, x, y) -> MOD(minus(x, y), y)
IFMOD(true, x'', 0) -> MOD(x'', 0)
IFMOD(true, s(x''), s(y'')) -> MOD(minus(x'', y''), s(y''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Nar
...
→DP Problem 11
↳Narrowing Transformation
MOD(s(x'), s(0)) -> IFMOD(true, s(x'), s(0))
IFMOD(true, s(x''), s(y'')) -> MOD(minus(x'', y''), s(y''))
MOD(s(s(y'')), s(s(x''))) -> IFMOD(le(x'', y''), s(s(y'')), s(s(x'')))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, x, y) -> mod(minus(x, y), y)
ifmod(false, s(x), s(y)) -> s(x)
innermost
three new Dependency Pairs are created:
MOD(s(s(y'')), s(s(x''))) -> IFMOD(le(x'', y''), s(s(y'')), s(s(x'')))
MOD(s(s(y''')), s(s(0))) -> IFMOD(true, s(s(y''')), s(s(0)))
MOD(s(s(0)), s(s(s(x')))) -> IFMOD(false, s(s(0)), s(s(s(x'))))
MOD(s(s(s(y'))), s(s(s(x')))) -> IFMOD(le(x', y'), s(s(s(y'))), s(s(s(x'))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Nar
...
→DP Problem 12
↳Narrowing Transformation
MOD(s(s(s(y'))), s(s(s(x')))) -> IFMOD(le(x', y'), s(s(s(y'))), s(s(s(x'))))
MOD(s(s(y''')), s(s(0))) -> IFMOD(true, s(s(y''')), s(s(0)))
IFMOD(true, s(x''), s(y'')) -> MOD(minus(x'', y''), s(y''))
MOD(s(x'), s(0)) -> IFMOD(true, s(x'), s(0))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, x, y) -> mod(minus(x, y), y)
ifmod(false, s(x), s(y)) -> s(x)
innermost
two new Dependency Pairs are created:
IFMOD(true, s(x''), s(y'')) -> MOD(minus(x'', y''), s(y''))
IFMOD(true, s(x'''), s(0)) -> MOD(x''', s(0))
IFMOD(true, s(s(x')), s(s(y'))) -> MOD(minus(x', y'), s(s(y')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Nar
...
→DP Problem 13
↳Narrowing Transformation
MOD(s(s(y''')), s(s(0))) -> IFMOD(true, s(s(y''')), s(s(0)))
IFMOD(true, s(s(x')), s(s(y'))) -> MOD(minus(x', y'), s(s(y')))
MOD(s(s(s(y'))), s(s(s(x')))) -> IFMOD(le(x', y'), s(s(s(y'))), s(s(s(x'))))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, x, y) -> mod(minus(x, y), y)
ifmod(false, s(x), s(y)) -> s(x)
innermost
three new Dependency Pairs are created:
MOD(s(s(s(y'))), s(s(s(x')))) -> IFMOD(le(x', y'), s(s(s(y'))), s(s(s(x'))))
MOD(s(s(s(y''))), s(s(s(0)))) -> IFMOD(true, s(s(s(y''))), s(s(s(0))))
MOD(s(s(s(0))), s(s(s(s(x''))))) -> IFMOD(false, s(s(s(0))), s(s(s(s(x'')))))
MOD(s(s(s(s(y'')))), s(s(s(s(x''))))) -> IFMOD(le(x'', y''), s(s(s(s(y'')))), s(s(s(s(x'')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Nar
...
→DP Problem 16
↳Narrowing Transformation
MOD(s(s(s(s(y'')))), s(s(s(s(x''))))) -> IFMOD(le(x'', y''), s(s(s(s(y'')))), s(s(s(s(x'')))))
MOD(s(s(s(y''))), s(s(s(0)))) -> IFMOD(true, s(s(s(y''))), s(s(s(0))))
IFMOD(true, s(s(x')), s(s(y'))) -> MOD(minus(x', y'), s(s(y')))
MOD(s(s(y''')), s(s(0))) -> IFMOD(true, s(s(y''')), s(s(0)))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, x, y) -> mod(minus(x, y), y)
ifmod(false, s(x), s(y)) -> s(x)
innermost
two new Dependency Pairs are created:
IFMOD(true, s(s(x')), s(s(y'))) -> MOD(minus(x', y'), s(s(y')))
IFMOD(true, s(s(x'')), s(s(0))) -> MOD(x'', s(s(0)))
IFMOD(true, s(s(s(x''))), s(s(s(y'')))) -> MOD(minus(x'', y''), s(s(s(y''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Nar
...
→DP Problem 17
↳Narrowing Transformation
MOD(s(s(s(y''))), s(s(s(0)))) -> IFMOD(true, s(s(s(y''))), s(s(s(0))))
IFMOD(true, s(s(s(x''))), s(s(s(y'')))) -> MOD(minus(x'', y''), s(s(s(y''))))
MOD(s(s(s(s(y'')))), s(s(s(s(x''))))) -> IFMOD(le(x'', y''), s(s(s(s(y'')))), s(s(s(s(x'')))))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, x, y) -> mod(minus(x, y), y)
ifmod(false, s(x), s(y)) -> s(x)
innermost
three new Dependency Pairs are created:
MOD(s(s(s(s(y'')))), s(s(s(s(x''))))) -> IFMOD(le(x'', y''), s(s(s(s(y'')))), s(s(s(s(x'')))))
MOD(s(s(s(s(y''')))), s(s(s(s(0))))) -> IFMOD(true, s(s(s(s(y''')))), s(s(s(s(0)))))
MOD(s(s(s(s(0)))), s(s(s(s(s(x')))))) -> IFMOD(false, s(s(s(s(0)))), s(s(s(s(s(x'))))))
MOD(s(s(s(s(s(y'))))), s(s(s(s(s(x')))))) -> IFMOD(le(x', y'), s(s(s(s(s(y'))))), s(s(s(s(s(x'))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Nar
...
→DP Problem 19
↳Narrowing Transformation
MOD(s(s(s(s(s(y'))))), s(s(s(s(s(x')))))) -> IFMOD(le(x', y'), s(s(s(s(s(y'))))), s(s(s(s(s(x'))))))
MOD(s(s(s(s(y''')))), s(s(s(s(0))))) -> IFMOD(true, s(s(s(s(y''')))), s(s(s(s(0)))))
IFMOD(true, s(s(s(x''))), s(s(s(y'')))) -> MOD(minus(x'', y''), s(s(s(y''))))
MOD(s(s(s(y''))), s(s(s(0)))) -> IFMOD(true, s(s(s(y''))), s(s(s(0))))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, x, y) -> mod(minus(x, y), y)
ifmod(false, s(x), s(y)) -> s(x)
innermost
two new Dependency Pairs are created:
IFMOD(true, s(s(s(x''))), s(s(s(y'')))) -> MOD(minus(x'', y''), s(s(s(y''))))
IFMOD(true, s(s(s(x'''))), s(s(s(0)))) -> MOD(x''', s(s(s(0))))
IFMOD(true, s(s(s(s(x')))), s(s(s(s(y'))))) -> MOD(minus(x', y'), s(s(s(s(y')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Nar
...
→DP Problem 21
↳Narrowing Transformation
MOD(s(s(s(s(y''')))), s(s(s(s(0))))) -> IFMOD(true, s(s(s(s(y''')))), s(s(s(s(0)))))
IFMOD(true, s(s(s(s(x')))), s(s(s(s(y'))))) -> MOD(minus(x', y'), s(s(s(s(y')))))
MOD(s(s(s(s(s(y'))))), s(s(s(s(s(x')))))) -> IFMOD(le(x', y'), s(s(s(s(s(y'))))), s(s(s(s(s(x'))))))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, x, y) -> mod(minus(x, y), y)
ifmod(false, s(x), s(y)) -> s(x)
innermost
three new Dependency Pairs are created:
MOD(s(s(s(s(s(y'))))), s(s(s(s(s(x')))))) -> IFMOD(le(x', y'), s(s(s(s(s(y'))))), s(s(s(s(s(x'))))))
MOD(s(s(s(s(s(y''))))), s(s(s(s(s(0)))))) -> IFMOD(true, s(s(s(s(s(y''))))), s(s(s(s(s(0))))))
MOD(s(s(s(s(s(0))))), s(s(s(s(s(s(x''))))))) -> IFMOD(false, s(s(s(s(s(0))))), s(s(s(s(s(s(x'')))))))
MOD(s(s(s(s(s(s(y'')))))), s(s(s(s(s(s(x''))))))) -> IFMOD(le(x'', y''), s(s(s(s(s(s(y'')))))), s(s(s(s(s(s(x'')))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Nar
...
→DP Problem 24
↳Narrowing Transformation
MOD(s(s(s(s(s(s(y'')))))), s(s(s(s(s(s(x''))))))) -> IFMOD(le(x'', y''), s(s(s(s(s(s(y'')))))), s(s(s(s(s(s(x'')))))))
MOD(s(s(s(s(s(y''))))), s(s(s(s(s(0)))))) -> IFMOD(true, s(s(s(s(s(y''))))), s(s(s(s(s(0))))))
IFMOD(true, s(s(s(s(x')))), s(s(s(s(y'))))) -> MOD(minus(x', y'), s(s(s(s(y')))))
MOD(s(s(s(s(y''')))), s(s(s(s(0))))) -> IFMOD(true, s(s(s(s(y''')))), s(s(s(s(0)))))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, x, y) -> mod(minus(x, y), y)
ifmod(false, s(x), s(y)) -> s(x)
innermost
two new Dependency Pairs are created:
IFMOD(true, s(s(s(s(x')))), s(s(s(s(y'))))) -> MOD(minus(x', y'), s(s(s(s(y')))))
IFMOD(true, s(s(s(s(x'')))), s(s(s(s(0))))) -> MOD(x'', s(s(s(s(0)))))
IFMOD(true, s(s(s(s(s(x''))))), s(s(s(s(s(y'')))))) -> MOD(minus(x'', y''), s(s(s(s(s(y''))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Nar
...
→DP Problem 27
↳Remaining Obligation(s)
MOD(s(s(s(s(s(y''))))), s(s(s(s(s(0)))))) -> IFMOD(true, s(s(s(s(s(y''))))), s(s(s(s(s(0))))))
IFMOD(true, s(s(s(s(s(x''))))), s(s(s(s(s(y'')))))) -> MOD(minus(x'', y''), s(s(s(s(s(y''))))))
MOD(s(s(s(s(s(s(y'')))))), s(s(s(s(s(s(x''))))))) -> IFMOD(le(x'', y''), s(s(s(s(s(s(y'')))))), s(s(s(s(s(s(x'')))))))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, x, y) -> mod(minus(x, y), y)
ifmod(false, s(x), s(y)) -> s(x)
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Nar
...
→DP Problem 28
↳Argument Filtering and Ordering
IFMOD(true, s(s(s(s(x'')))), s(s(s(s(0))))) -> MOD(x'', s(s(s(s(0)))))
MOD(s(s(s(s(y''')))), s(s(s(s(0))))) -> IFMOD(true, s(s(s(s(y''')))), s(s(s(s(0)))))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, x, y) -> mod(minus(x, y), y)
ifmod(false, s(x), s(y)) -> s(x)
innermost
IFMOD(true, s(s(s(s(x'')))), s(s(s(s(0))))) -> MOD(x'', s(s(s(s(0)))))
MOD(x1, x2) -> x1
s(x1) -> s(x1)
IFMOD(x1, x2, x3) -> x2
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Nar
...
→DP Problem 31
↳Dependency Graph
MOD(s(s(s(s(y''')))), s(s(s(s(0))))) -> IFMOD(true, s(s(s(s(y''')))), s(s(s(s(0)))))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, x, y) -> mod(minus(x, y), y)
ifmod(false, s(x), s(y)) -> s(x)
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Nar
...
→DP Problem 22
↳Forward Instantiation Transformation
IFMOD(true, s(s(s(x'''))), s(s(s(0)))) -> MOD(x''', s(s(s(0))))
MOD(s(s(s(y''))), s(s(s(0)))) -> IFMOD(true, s(s(s(y''))), s(s(s(0))))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, x, y) -> mod(minus(x, y), y)
ifmod(false, s(x), s(y)) -> s(x)
innermost
one new Dependency Pair is created:
IFMOD(true, s(s(s(x'''))), s(s(s(0)))) -> MOD(x''', s(s(s(0))))
IFMOD(true, s(s(s(s(s(s(y'''')))))), s(s(s(0)))) -> MOD(s(s(s(y''''))), s(s(s(0))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Nar
...
→DP Problem 25
↳Forward Instantiation Transformation
IFMOD(true, s(s(s(s(s(s(y'''')))))), s(s(s(0)))) -> MOD(s(s(s(y''''))), s(s(s(0))))
MOD(s(s(s(y''))), s(s(s(0)))) -> IFMOD(true, s(s(s(y''))), s(s(s(0))))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, x, y) -> mod(minus(x, y), y)
ifmod(false, s(x), s(y)) -> s(x)
innermost
one new Dependency Pair is created:
MOD(s(s(s(y''))), s(s(s(0)))) -> IFMOD(true, s(s(s(y''))), s(s(s(0))))
MOD(s(s(s(s(s(s(y'''''')))))), s(s(s(0)))) -> IFMOD(true, s(s(s(s(s(s(y'''''')))))), s(s(s(0))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Nar
...
→DP Problem 29
↳Argument Filtering and Ordering
MOD(s(s(s(s(s(s(y'''''')))))), s(s(s(0)))) -> IFMOD(true, s(s(s(s(s(s(y'''''')))))), s(s(s(0))))
IFMOD(true, s(s(s(s(s(s(y'''')))))), s(s(s(0)))) -> MOD(s(s(s(y''''))), s(s(s(0))))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, x, y) -> mod(minus(x, y), y)
ifmod(false, s(x), s(y)) -> s(x)
innermost
IFMOD(true, s(s(s(s(s(s(y'''')))))), s(s(s(0)))) -> MOD(s(s(s(y''''))), s(s(s(0))))
MOD(x1, x2) -> x1
s(x1) -> s(x1)
IFMOD(x1, x2, x3) -> x2
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Nar
...
→DP Problem 32
↳Dependency Graph
MOD(s(s(s(s(s(s(y'''''')))))), s(s(s(0)))) -> IFMOD(true, s(s(s(s(s(s(y'''''')))))), s(s(s(0))))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, x, y) -> mod(minus(x, y), y)
ifmod(false, s(x), s(y)) -> s(x)
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Nar
...
→DP Problem 18
↳Forward Instantiation Transformation
IFMOD(true, s(s(x'')), s(s(0))) -> MOD(x'', s(s(0)))
MOD(s(s(y''')), s(s(0))) -> IFMOD(true, s(s(y''')), s(s(0)))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, x, y) -> mod(minus(x, y), y)
ifmod(false, s(x), s(y)) -> s(x)
innermost
one new Dependency Pair is created:
IFMOD(true, s(s(x'')), s(s(0))) -> MOD(x'', s(s(0)))
IFMOD(true, s(s(s(s(y''''')))), s(s(0))) -> MOD(s(s(y''''')), s(s(0)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Nar
...
→DP Problem 20
↳Forward Instantiation Transformation
IFMOD(true, s(s(s(s(y''''')))), s(s(0))) -> MOD(s(s(y''''')), s(s(0)))
MOD(s(s(y''')), s(s(0))) -> IFMOD(true, s(s(y''')), s(s(0)))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, x, y) -> mod(minus(x, y), y)
ifmod(false, s(x), s(y)) -> s(x)
innermost
one new Dependency Pair is created:
MOD(s(s(y''')), s(s(0))) -> IFMOD(true, s(s(y''')), s(s(0)))
MOD(s(s(s(s(y''''''')))), s(s(0))) -> IFMOD(true, s(s(s(s(y''''''')))), s(s(0)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Nar
...
→DP Problem 23
↳Forward Instantiation Transformation
MOD(s(s(s(s(y''''''')))), s(s(0))) -> IFMOD(true, s(s(s(s(y''''''')))), s(s(0)))
IFMOD(true, s(s(s(s(y''''')))), s(s(0))) -> MOD(s(s(y''''')), s(s(0)))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, x, y) -> mod(minus(x, y), y)
ifmod(false, s(x), s(y)) -> s(x)
innermost
one new Dependency Pair is created:
IFMOD(true, s(s(s(s(y''''')))), s(s(0))) -> MOD(s(s(y''''')), s(s(0)))
IFMOD(true, s(s(s(s(s(s(y''''''''')))))), s(s(0))) -> MOD(s(s(s(s(y''''''''')))), s(s(0)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Nar
...
→DP Problem 26
↳Forward Instantiation Transformation
IFMOD(true, s(s(s(s(s(s(y''''''''')))))), s(s(0))) -> MOD(s(s(s(s(y''''''''')))), s(s(0)))
MOD(s(s(s(s(y''''''')))), s(s(0))) -> IFMOD(true, s(s(s(s(y''''''')))), s(s(0)))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, x, y) -> mod(minus(x, y), y)
ifmod(false, s(x), s(y)) -> s(x)
innermost
one new Dependency Pair is created:
MOD(s(s(s(s(y''''''')))), s(s(0))) -> IFMOD(true, s(s(s(s(y''''''')))), s(s(0)))
MOD(s(s(s(s(s(s(y''''''''''')))))), s(s(0))) -> IFMOD(true, s(s(s(s(s(s(y''''''''''')))))), s(s(0)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Nar
...
→DP Problem 30
↳Argument Filtering and Ordering
MOD(s(s(s(s(s(s(y''''''''''')))))), s(s(0))) -> IFMOD(true, s(s(s(s(s(s(y''''''''''')))))), s(s(0)))
IFMOD(true, s(s(s(s(s(s(y''''''''')))))), s(s(0))) -> MOD(s(s(s(s(y''''''''')))), s(s(0)))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, x, y) -> mod(minus(x, y), y)
ifmod(false, s(x), s(y)) -> s(x)
innermost
IFMOD(true, s(s(s(s(s(s(y''''''''')))))), s(s(0))) -> MOD(s(s(s(s(y''''''''')))), s(s(0)))
IFMOD(x1, x2, x3) -> x2
s(x1) -> s(x1)
MOD(x1, x2) -> x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Nar
...
→DP Problem 33
↳Dependency Graph
MOD(s(s(s(s(s(s(y''''''''''')))))), s(s(0))) -> IFMOD(true, s(s(s(s(s(s(y''''''''''')))))), s(s(0)))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, x, y) -> mod(minus(x, y), y)
ifmod(false, s(x), s(y)) -> s(x)
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Nar
...
→DP Problem 14
↳Argument Filtering and Ordering
IFMOD(true, s(x'''), s(0)) -> MOD(x''', s(0))
MOD(s(x'), s(0)) -> IFMOD(true, s(x'), s(0))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, x, y) -> mod(minus(x, y), y)
ifmod(false, s(x), s(y)) -> s(x)
innermost
IFMOD(true, s(x'''), s(0)) -> MOD(x''', s(0))
MOD(x1, x2) -> x1
s(x1) -> s(x1)
IFMOD(x1, x2, x3) -> x2
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Nar
...
→DP Problem 15
↳Dependency Graph
MOD(s(x'), s(0)) -> IFMOD(true, s(x'), s(0))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, x, y) -> mod(minus(x, y), y)
ifmod(false, s(x), s(y)) -> s(x)
innermost