Term Rewriting System R:
[x, y]
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(s(x), s(y)), s(y)))

Innermost Termination of R to be shown.

`   R`
`     ↳Dependency Pair Analysis`

R contains the following Dependency Pairs:

MINUS(s(x), s(y)) -> MINUS(x, y)
LE(s(x), s(y)) -> LE(x, y)
QUOT(s(x), s(y)) -> QUOT(minus(s(x), s(y)), s(y))
QUOT(s(x), s(y)) -> MINUS(s(x), s(y))

Furthermore, R contains three SCCs.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Argument Filtering and Ordering`
`       →DP Problem 2`
`         ↳AFS`
`       →DP Problem 3`
`         ↳Remaining`

Dependency Pair:

MINUS(s(x), s(y)) -> MINUS(x, y)

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(s(x), s(y)), s(y)))

Strategy:

innermost

The following dependency pair can be strictly oriented:

MINUS(s(x), s(y)) -> MINUS(x, y)

There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
MINUS(x1, x2) -> MINUS(x1, x2)
s(x1) -> s(x1)

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳AFS`
`           →DP Problem 4`
`             ↳Dependency Graph`
`       →DP Problem 2`
`         ↳AFS`
`       →DP Problem 3`
`         ↳Remaining`

Dependency Pair:

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(s(x), s(y)), s(y)))

Strategy:

innermost

Using the Dependency Graph resulted in no new DP problems.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳AFS`
`       →DP Problem 2`
`         ↳Argument Filtering and Ordering`
`       →DP Problem 3`
`         ↳Remaining`

Dependency Pair:

LE(s(x), s(y)) -> LE(x, y)

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(s(x), s(y)), s(y)))

Strategy:

innermost

The following dependency pair can be strictly oriented:

LE(s(x), s(y)) -> LE(x, y)

There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
LE(x1, x2) -> LE(x1, x2)
s(x1) -> s(x1)

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳AFS`
`       →DP Problem 2`
`         ↳AFS`
`           →DP Problem 5`
`             ↳Dependency Graph`
`       →DP Problem 3`
`         ↳Remaining`

Dependency Pair:

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(s(x), s(y)), s(y)))

Strategy:

innermost

Using the Dependency Graph resulted in no new DP problems.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳AFS`
`       →DP Problem 2`
`         ↳AFS`
`       →DP Problem 3`
`         ↳Remaining Obligation(s)`

The following remains to be proven:
Dependency Pair:

QUOT(s(x), s(y)) -> QUOT(minus(s(x), s(y)), s(y))

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(s(x), s(y)), s(y)))

Strategy:

innermost

Innermost Termination of R could not be shown.
Duration:
0:00 minutes