R
↳Dependency Pair Analysis
MINUS(s(x), s(y)) -> MINUS(x, y)
LE(s(x), s(y)) -> LE(x, y)
QUOT(x, s(y)) -> IFQUOT(le(s(y), x), x, s(y))
QUOT(x, s(y)) -> LE(s(y), x)
IFQUOT(true, x, y) -> QUOT(minus(x, y), y)
IFQUOT(true, x, y) -> MINUS(x, y)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
MINUS(s(x), s(y)) -> MINUS(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
quot(x, s(y)) -> ifquot(le(s(y), x), x, s(y))
ifquot(true, x, y) -> s(quot(minus(x, y), y))
ifquot(false, x, y) -> 0
innermost
one new Dependency Pair is created:
MINUS(s(x), s(y)) -> MINUS(x, y)
MINUS(s(s(x'')), s(s(y''))) -> MINUS(s(x''), s(y''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
MINUS(s(s(x'')), s(s(y''))) -> MINUS(s(x''), s(y''))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
quot(x, s(y)) -> ifquot(le(s(y), x), x, s(y))
ifquot(true, x, y) -> s(quot(minus(x, y), y))
ifquot(false, x, y) -> 0
innermost
one new Dependency Pair is created:
MINUS(s(s(x'')), s(s(y''))) -> MINUS(s(x''), s(y''))
MINUS(s(s(s(x''''))), s(s(s(y'''')))) -> MINUS(s(s(x'''')), s(s(y'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳FwdInst
...
→DP Problem 5
↳Argument Filtering and Ordering
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
MINUS(s(s(s(x''''))), s(s(s(y'''')))) -> MINUS(s(s(x'''')), s(s(y'''')))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
quot(x, s(y)) -> ifquot(le(s(y), x), x, s(y))
ifquot(true, x, y) -> s(quot(minus(x, y), y))
ifquot(false, x, y) -> 0
innermost
MINUS(s(s(s(x''''))), s(s(s(y'''')))) -> MINUS(s(s(x'''')), s(s(y'''')))
MINUS(x1, x2) -> MINUS(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳FwdInst
...
→DP Problem 6
↳Dependency Graph
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
quot(x, s(y)) -> ifquot(le(s(y), x), x, s(y))
ifquot(true, x, y) -> s(quot(minus(x, y), y))
ifquot(false, x, y) -> 0
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Forward Instantiation Transformation
→DP Problem 3
↳Nar
LE(s(x), s(y)) -> LE(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
quot(x, s(y)) -> ifquot(le(s(y), x), x, s(y))
ifquot(true, x, y) -> s(quot(minus(x, y), y))
ifquot(false, x, y) -> 0
innermost
one new Dependency Pair is created:
LE(s(x), s(y)) -> LE(x, y)
LE(s(s(x'')), s(s(y''))) -> LE(s(x''), s(y''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 7
↳Forward Instantiation Transformation
→DP Problem 3
↳Nar
LE(s(s(x'')), s(s(y''))) -> LE(s(x''), s(y''))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
quot(x, s(y)) -> ifquot(le(s(y), x), x, s(y))
ifquot(true, x, y) -> s(quot(minus(x, y), y))
ifquot(false, x, y) -> 0
innermost
one new Dependency Pair is created:
LE(s(s(x'')), s(s(y''))) -> LE(s(x''), s(y''))
LE(s(s(s(x''''))), s(s(s(y'''')))) -> LE(s(s(x'''')), s(s(y'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 7
↳FwdInst
...
→DP Problem 8
↳Argument Filtering and Ordering
→DP Problem 3
↳Nar
LE(s(s(s(x''''))), s(s(s(y'''')))) -> LE(s(s(x'''')), s(s(y'''')))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
quot(x, s(y)) -> ifquot(le(s(y), x), x, s(y))
ifquot(true, x, y) -> s(quot(minus(x, y), y))
ifquot(false, x, y) -> 0
innermost
LE(s(s(s(x''''))), s(s(s(y'''')))) -> LE(s(s(x'''')), s(s(y'''')))
LE(x1, x2) -> LE(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 7
↳FwdInst
...
→DP Problem 9
↳Dependency Graph
→DP Problem 3
↳Nar
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
quot(x, s(y)) -> ifquot(le(s(y), x), x, s(y))
ifquot(true, x, y) -> s(quot(minus(x, y), y))
ifquot(false, x, y) -> 0
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Narrowing Transformation
IFQUOT(true, x, y) -> QUOT(minus(x, y), y)
QUOT(x, s(y)) -> IFQUOT(le(s(y), x), x, s(y))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
quot(x, s(y)) -> ifquot(le(s(y), x), x, s(y))
ifquot(true, x, y) -> s(quot(minus(x, y), y))
ifquot(false, x, y) -> 0
innermost
two new Dependency Pairs are created:
QUOT(x, s(y)) -> IFQUOT(le(s(y), x), x, s(y))
QUOT(0, s(y')) -> IFQUOT(false, 0, s(y'))
QUOT(s(y''), s(y0)) -> IFQUOT(le(y0, y''), s(y''), s(y0))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Narrowing Transformation
QUOT(s(y''), s(y0)) -> IFQUOT(le(y0, y''), s(y''), s(y0))
IFQUOT(true, x, y) -> QUOT(minus(x, y), y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
quot(x, s(y)) -> ifquot(le(s(y), x), x, s(y))
ifquot(true, x, y) -> s(quot(minus(x, y), y))
ifquot(false, x, y) -> 0
innermost
two new Dependency Pairs are created:
IFQUOT(true, x, y) -> QUOT(minus(x, y), y)
IFQUOT(true, x'', 0) -> QUOT(x'', 0)
IFQUOT(true, s(x''), s(y'')) -> QUOT(minus(x'', y''), s(y''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Nar
...
→DP Problem 11
↳Narrowing Transformation
IFQUOT(true, s(x''), s(y'')) -> QUOT(minus(x'', y''), s(y''))
QUOT(s(y''), s(y0)) -> IFQUOT(le(y0, y''), s(y''), s(y0))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
quot(x, s(y)) -> ifquot(le(s(y), x), x, s(y))
ifquot(true, x, y) -> s(quot(minus(x, y), y))
ifquot(false, x, y) -> 0
innermost
three new Dependency Pairs are created:
QUOT(s(y''), s(y0)) -> IFQUOT(le(y0, y''), s(y''), s(y0))
QUOT(s(y'''), s(0)) -> IFQUOT(true, s(y'''), s(0))
QUOT(s(0), s(s(x'))) -> IFQUOT(false, s(0), s(s(x')))
QUOT(s(s(y')), s(s(x'))) -> IFQUOT(le(x', y'), s(s(y')), s(s(x')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Nar
...
→DP Problem 12
↳Narrowing Transformation
QUOT(s(s(y')), s(s(x'))) -> IFQUOT(le(x', y'), s(s(y')), s(s(x')))
QUOT(s(y'''), s(0)) -> IFQUOT(true, s(y'''), s(0))
IFQUOT(true, s(x''), s(y'')) -> QUOT(minus(x'', y''), s(y''))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
quot(x, s(y)) -> ifquot(le(s(y), x), x, s(y))
ifquot(true, x, y) -> s(quot(minus(x, y), y))
ifquot(false, x, y) -> 0
innermost
two new Dependency Pairs are created:
IFQUOT(true, s(x''), s(y'')) -> QUOT(minus(x'', y''), s(y''))
IFQUOT(true, s(x'''), s(0)) -> QUOT(x''', s(0))
IFQUOT(true, s(s(x')), s(s(y'))) -> QUOT(minus(x', y'), s(s(y')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Nar
...
→DP Problem 13
↳Narrowing Transformation
IFQUOT(true, s(s(x')), s(s(y'))) -> QUOT(minus(x', y'), s(s(y')))
QUOT(s(s(y')), s(s(x'))) -> IFQUOT(le(x', y'), s(s(y')), s(s(x')))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
quot(x, s(y)) -> ifquot(le(s(y), x), x, s(y))
ifquot(true, x, y) -> s(quot(minus(x, y), y))
ifquot(false, x, y) -> 0
innermost
three new Dependency Pairs are created:
QUOT(s(s(y')), s(s(x'))) -> IFQUOT(le(x', y'), s(s(y')), s(s(x')))
QUOT(s(s(y'')), s(s(0))) -> IFQUOT(true, s(s(y'')), s(s(0)))
QUOT(s(s(0)), s(s(s(x'')))) -> IFQUOT(false, s(s(0)), s(s(s(x''))))
QUOT(s(s(s(y''))), s(s(s(x'')))) -> IFQUOT(le(x'', y''), s(s(s(y''))), s(s(s(x''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Nar
...
→DP Problem 16
↳Narrowing Transformation
QUOT(s(s(s(y''))), s(s(s(x'')))) -> IFQUOT(le(x'', y''), s(s(s(y''))), s(s(s(x''))))
QUOT(s(s(y'')), s(s(0))) -> IFQUOT(true, s(s(y'')), s(s(0)))
IFQUOT(true, s(s(x')), s(s(y'))) -> QUOT(minus(x', y'), s(s(y')))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
quot(x, s(y)) -> ifquot(le(s(y), x), x, s(y))
ifquot(true, x, y) -> s(quot(minus(x, y), y))
ifquot(false, x, y) -> 0
innermost
two new Dependency Pairs are created:
IFQUOT(true, s(s(x')), s(s(y'))) -> QUOT(minus(x', y'), s(s(y')))
IFQUOT(true, s(s(x'')), s(s(0))) -> QUOT(x'', s(s(0)))
IFQUOT(true, s(s(s(x''))), s(s(s(y'')))) -> QUOT(minus(x'', y''), s(s(s(y''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Nar
...
→DP Problem 17
↳Narrowing Transformation
IFQUOT(true, s(s(s(x''))), s(s(s(y'')))) -> QUOT(minus(x'', y''), s(s(s(y''))))
QUOT(s(s(s(y''))), s(s(s(x'')))) -> IFQUOT(le(x'', y''), s(s(s(y''))), s(s(s(x''))))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
quot(x, s(y)) -> ifquot(le(s(y), x), x, s(y))
ifquot(true, x, y) -> s(quot(minus(x, y), y))
ifquot(false, x, y) -> 0
innermost
three new Dependency Pairs are created:
QUOT(s(s(s(y''))), s(s(s(x'')))) -> IFQUOT(le(x'', y''), s(s(s(y''))), s(s(s(x''))))
QUOT(s(s(s(y'''))), s(s(s(0)))) -> IFQUOT(true, s(s(s(y'''))), s(s(s(0))))
QUOT(s(s(s(0))), s(s(s(s(x'))))) -> IFQUOT(false, s(s(s(0))), s(s(s(s(x')))))
QUOT(s(s(s(s(y')))), s(s(s(s(x'))))) -> IFQUOT(le(x', y'), s(s(s(s(y')))), s(s(s(s(x')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Nar
...
→DP Problem 19
↳Narrowing Transformation
QUOT(s(s(s(s(y')))), s(s(s(s(x'))))) -> IFQUOT(le(x', y'), s(s(s(s(y')))), s(s(s(s(x')))))
QUOT(s(s(s(y'''))), s(s(s(0)))) -> IFQUOT(true, s(s(s(y'''))), s(s(s(0))))
IFQUOT(true, s(s(s(x''))), s(s(s(y'')))) -> QUOT(minus(x'', y''), s(s(s(y''))))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
quot(x, s(y)) -> ifquot(le(s(y), x), x, s(y))
ifquot(true, x, y) -> s(quot(minus(x, y), y))
ifquot(false, x, y) -> 0
innermost
two new Dependency Pairs are created:
IFQUOT(true, s(s(s(x''))), s(s(s(y'')))) -> QUOT(minus(x'', y''), s(s(s(y''))))
IFQUOT(true, s(s(s(x'''))), s(s(s(0)))) -> QUOT(x''', s(s(s(0))))
IFQUOT(true, s(s(s(s(x')))), s(s(s(s(y'))))) -> QUOT(minus(x', y'), s(s(s(s(y')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Nar
...
→DP Problem 21
↳Narrowing Transformation
IFQUOT(true, s(s(s(s(x')))), s(s(s(s(y'))))) -> QUOT(minus(x', y'), s(s(s(s(y')))))
QUOT(s(s(s(s(y')))), s(s(s(s(x'))))) -> IFQUOT(le(x', y'), s(s(s(s(y')))), s(s(s(s(x')))))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
quot(x, s(y)) -> ifquot(le(s(y), x), x, s(y))
ifquot(true, x, y) -> s(quot(minus(x, y), y))
ifquot(false, x, y) -> 0
innermost
three new Dependency Pairs are created:
QUOT(s(s(s(s(y')))), s(s(s(s(x'))))) -> IFQUOT(le(x', y'), s(s(s(s(y')))), s(s(s(s(x')))))
QUOT(s(s(s(s(y'')))), s(s(s(s(0))))) -> IFQUOT(true, s(s(s(s(y'')))), s(s(s(s(0)))))
QUOT(s(s(s(s(0)))), s(s(s(s(s(x'')))))) -> IFQUOT(false, s(s(s(s(0)))), s(s(s(s(s(x''))))))
QUOT(s(s(s(s(s(y''))))), s(s(s(s(s(x'')))))) -> IFQUOT(le(x'', y''), s(s(s(s(s(y''))))), s(s(s(s(s(x''))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Nar
...
→DP Problem 24
↳Narrowing Transformation
QUOT(s(s(s(s(s(y''))))), s(s(s(s(s(x'')))))) -> IFQUOT(le(x'', y''), s(s(s(s(s(y''))))), s(s(s(s(s(x''))))))
QUOT(s(s(s(s(y'')))), s(s(s(s(0))))) -> IFQUOT(true, s(s(s(s(y'')))), s(s(s(s(0)))))
IFQUOT(true, s(s(s(s(x')))), s(s(s(s(y'))))) -> QUOT(minus(x', y'), s(s(s(s(y')))))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
quot(x, s(y)) -> ifquot(le(s(y), x), x, s(y))
ifquot(true, x, y) -> s(quot(minus(x, y), y))
ifquot(false, x, y) -> 0
innermost
two new Dependency Pairs are created:
IFQUOT(true, s(s(s(s(x')))), s(s(s(s(y'))))) -> QUOT(minus(x', y'), s(s(s(s(y')))))
IFQUOT(true, s(s(s(s(x'')))), s(s(s(s(0))))) -> QUOT(x'', s(s(s(s(0)))))
IFQUOT(true, s(s(s(s(s(x''))))), s(s(s(s(s(y'')))))) -> QUOT(minus(x'', y''), s(s(s(s(s(y''))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Nar
...
→DP Problem 27
↳Remaining Obligation(s)
IFQUOT(true, s(s(s(s(s(x''))))), s(s(s(s(s(y'')))))) -> QUOT(minus(x'', y''), s(s(s(s(s(y''))))))
QUOT(s(s(s(s(s(y''))))), s(s(s(s(s(x'')))))) -> IFQUOT(le(x'', y''), s(s(s(s(s(y''))))), s(s(s(s(s(x''))))))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
quot(x, s(y)) -> ifquot(le(s(y), x), x, s(y))
ifquot(true, x, y) -> s(quot(minus(x, y), y))
ifquot(false, x, y) -> 0
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Nar
...
→DP Problem 28
↳Argument Filtering and Ordering
IFQUOT(true, s(s(s(s(x'')))), s(s(s(s(0))))) -> QUOT(x'', s(s(s(s(0)))))
QUOT(s(s(s(s(y'')))), s(s(s(s(0))))) -> IFQUOT(true, s(s(s(s(y'')))), s(s(s(s(0)))))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
quot(x, s(y)) -> ifquot(le(s(y), x), x, s(y))
ifquot(true, x, y) -> s(quot(minus(x, y), y))
ifquot(false, x, y) -> 0
innermost
IFQUOT(true, s(s(s(s(x'')))), s(s(s(s(0))))) -> QUOT(x'', s(s(s(s(0)))))
QUOT(x1, x2) -> x1
s(x1) -> s(x1)
IFQUOT(x1, x2, x3) -> x2
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Nar
...
→DP Problem 31
↳Dependency Graph
QUOT(s(s(s(s(y'')))), s(s(s(s(0))))) -> IFQUOT(true, s(s(s(s(y'')))), s(s(s(s(0)))))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
quot(x, s(y)) -> ifquot(le(s(y), x), x, s(y))
ifquot(true, x, y) -> s(quot(minus(x, y), y))
ifquot(false, x, y) -> 0
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Nar
...
→DP Problem 22
↳Forward Instantiation Transformation
IFQUOT(true, s(s(s(x'''))), s(s(s(0)))) -> QUOT(x''', s(s(s(0))))
QUOT(s(s(s(y'''))), s(s(s(0)))) -> IFQUOT(true, s(s(s(y'''))), s(s(s(0))))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
quot(x, s(y)) -> ifquot(le(s(y), x), x, s(y))
ifquot(true, x, y) -> s(quot(minus(x, y), y))
ifquot(false, x, y) -> 0
innermost
one new Dependency Pair is created:
IFQUOT(true, s(s(s(x'''))), s(s(s(0)))) -> QUOT(x''', s(s(s(0))))
IFQUOT(true, s(s(s(s(s(s(y''''')))))), s(s(s(0)))) -> QUOT(s(s(s(y'''''))), s(s(s(0))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Nar
...
→DP Problem 25
↳Forward Instantiation Transformation
IFQUOT(true, s(s(s(s(s(s(y''''')))))), s(s(s(0)))) -> QUOT(s(s(s(y'''''))), s(s(s(0))))
QUOT(s(s(s(y'''))), s(s(s(0)))) -> IFQUOT(true, s(s(s(y'''))), s(s(s(0))))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
quot(x, s(y)) -> ifquot(le(s(y), x), x, s(y))
ifquot(true, x, y) -> s(quot(minus(x, y), y))
ifquot(false, x, y) -> 0
innermost
one new Dependency Pair is created:
QUOT(s(s(s(y'''))), s(s(s(0)))) -> IFQUOT(true, s(s(s(y'''))), s(s(s(0))))
QUOT(s(s(s(s(s(s(y''''''')))))), s(s(s(0)))) -> IFQUOT(true, s(s(s(s(s(s(y''''''')))))), s(s(s(0))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Nar
...
→DP Problem 29
↳Argument Filtering and Ordering
QUOT(s(s(s(s(s(s(y''''''')))))), s(s(s(0)))) -> IFQUOT(true, s(s(s(s(s(s(y''''''')))))), s(s(s(0))))
IFQUOT(true, s(s(s(s(s(s(y''''')))))), s(s(s(0)))) -> QUOT(s(s(s(y'''''))), s(s(s(0))))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
quot(x, s(y)) -> ifquot(le(s(y), x), x, s(y))
ifquot(true, x, y) -> s(quot(minus(x, y), y))
ifquot(false, x, y) -> 0
innermost
IFQUOT(true, s(s(s(s(s(s(y''''')))))), s(s(s(0)))) -> QUOT(s(s(s(y'''''))), s(s(s(0))))
IFQUOT(x1, x2, x3) -> x2
s(x1) -> s(x1)
QUOT(x1, x2) -> x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Nar
...
→DP Problem 32
↳Dependency Graph
QUOT(s(s(s(s(s(s(y''''''')))))), s(s(s(0)))) -> IFQUOT(true, s(s(s(s(s(s(y''''''')))))), s(s(s(0))))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
quot(x, s(y)) -> ifquot(le(s(y), x), x, s(y))
ifquot(true, x, y) -> s(quot(minus(x, y), y))
ifquot(false, x, y) -> 0
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Nar
...
→DP Problem 18
↳Forward Instantiation Transformation
IFQUOT(true, s(s(x'')), s(s(0))) -> QUOT(x'', s(s(0)))
QUOT(s(s(y'')), s(s(0))) -> IFQUOT(true, s(s(y'')), s(s(0)))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
quot(x, s(y)) -> ifquot(le(s(y), x), x, s(y))
ifquot(true, x, y) -> s(quot(minus(x, y), y))
ifquot(false, x, y) -> 0
innermost
one new Dependency Pair is created:
IFQUOT(true, s(s(x'')), s(s(0))) -> QUOT(x'', s(s(0)))
IFQUOT(true, s(s(s(s(y'''')))), s(s(0))) -> QUOT(s(s(y'''')), s(s(0)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Nar
...
→DP Problem 20
↳Forward Instantiation Transformation
IFQUOT(true, s(s(s(s(y'''')))), s(s(0))) -> QUOT(s(s(y'''')), s(s(0)))
QUOT(s(s(y'')), s(s(0))) -> IFQUOT(true, s(s(y'')), s(s(0)))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
quot(x, s(y)) -> ifquot(le(s(y), x), x, s(y))
ifquot(true, x, y) -> s(quot(minus(x, y), y))
ifquot(false, x, y) -> 0
innermost
one new Dependency Pair is created:
QUOT(s(s(y'')), s(s(0))) -> IFQUOT(true, s(s(y'')), s(s(0)))
QUOT(s(s(s(s(y'''''')))), s(s(0))) -> IFQUOT(true, s(s(s(s(y'''''')))), s(s(0)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Nar
...
→DP Problem 23
↳Forward Instantiation Transformation
QUOT(s(s(s(s(y'''''')))), s(s(0))) -> IFQUOT(true, s(s(s(s(y'''''')))), s(s(0)))
IFQUOT(true, s(s(s(s(y'''')))), s(s(0))) -> QUOT(s(s(y'''')), s(s(0)))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
quot(x, s(y)) -> ifquot(le(s(y), x), x, s(y))
ifquot(true, x, y) -> s(quot(minus(x, y), y))
ifquot(false, x, y) -> 0
innermost
one new Dependency Pair is created:
IFQUOT(true, s(s(s(s(y'''')))), s(s(0))) -> QUOT(s(s(y'''')), s(s(0)))
IFQUOT(true, s(s(s(s(s(s(y'''''''')))))), s(s(0))) -> QUOT(s(s(s(s(y'''''''')))), s(s(0)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Nar
...
→DP Problem 26
↳Forward Instantiation Transformation
IFQUOT(true, s(s(s(s(s(s(y'''''''')))))), s(s(0))) -> QUOT(s(s(s(s(y'''''''')))), s(s(0)))
QUOT(s(s(s(s(y'''''')))), s(s(0))) -> IFQUOT(true, s(s(s(s(y'''''')))), s(s(0)))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
quot(x, s(y)) -> ifquot(le(s(y), x), x, s(y))
ifquot(true, x, y) -> s(quot(minus(x, y), y))
ifquot(false, x, y) -> 0
innermost
one new Dependency Pair is created:
QUOT(s(s(s(s(y'''''')))), s(s(0))) -> IFQUOT(true, s(s(s(s(y'''''')))), s(s(0)))
QUOT(s(s(s(s(s(s(y'''''''''')))))), s(s(0))) -> IFQUOT(true, s(s(s(s(s(s(y'''''''''')))))), s(s(0)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Nar
...
→DP Problem 30
↳Argument Filtering and Ordering
QUOT(s(s(s(s(s(s(y'''''''''')))))), s(s(0))) -> IFQUOT(true, s(s(s(s(s(s(y'''''''''')))))), s(s(0)))
IFQUOT(true, s(s(s(s(s(s(y'''''''')))))), s(s(0))) -> QUOT(s(s(s(s(y'''''''')))), s(s(0)))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
quot(x, s(y)) -> ifquot(le(s(y), x), x, s(y))
ifquot(true, x, y) -> s(quot(minus(x, y), y))
ifquot(false, x, y) -> 0
innermost
IFQUOT(true, s(s(s(s(s(s(y'''''''')))))), s(s(0))) -> QUOT(s(s(s(s(y'''''''')))), s(s(0)))
IFQUOT(x1, x2, x3) -> x2
s(x1) -> s(x1)
QUOT(x1, x2) -> x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Nar
...
→DP Problem 33
↳Dependency Graph
QUOT(s(s(s(s(s(s(y'''''''''')))))), s(s(0))) -> IFQUOT(true, s(s(s(s(s(s(y'''''''''')))))), s(s(0)))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
quot(x, s(y)) -> ifquot(le(s(y), x), x, s(y))
ifquot(true, x, y) -> s(quot(minus(x, y), y))
ifquot(false, x, y) -> 0
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Nar
...
→DP Problem 14
↳Argument Filtering and Ordering
IFQUOT(true, s(x'''), s(0)) -> QUOT(x''', s(0))
QUOT(s(y'''), s(0)) -> IFQUOT(true, s(y'''), s(0))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
quot(x, s(y)) -> ifquot(le(s(y), x), x, s(y))
ifquot(true, x, y) -> s(quot(minus(x, y), y))
ifquot(false, x, y) -> 0
innermost
IFQUOT(true, s(x'''), s(0)) -> QUOT(x''', s(0))
QUOT(x1, x2) -> x1
s(x1) -> s(x1)
IFQUOT(x1, x2, x3) -> x2
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Nar
...
→DP Problem 15
↳Dependency Graph
QUOT(s(y'''), s(0)) -> IFQUOT(true, s(y'''), s(0))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
quot(x, s(y)) -> ifquot(le(s(y), x), x, s(y))
ifquot(true, x, y) -> s(quot(minus(x, y), y))
ifquot(false, x, y) -> 0
innermost