Term Rewriting System R:
[x, y]
even(0) -> true
even(s(0)) -> false
even(s(s(x))) -> even(x)
half(0) -> 0
half(s(s(x))) -> s(half(x))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
times(0, y) -> 0
times(s(x), y) -> iftimes(even(s(x)), s(x), y)
iftimes(true, s(x), y) -> plus(times(half(s(x)), y), times(half(s(x)), y))
iftimes(false, s(x), y) -> plus(y, times(x, y))

Innermost Termination of R to be shown.

R
Dependency Pair Analysis

R contains the following Dependency Pairs:

EVEN(s(s(x))) -> EVEN(x)
HALF(s(s(x))) -> HALF(x)
PLUS(s(x), y) -> PLUS(x, y)
TIMES(s(x), y) -> IFTIMES(even(s(x)), s(x), y)
TIMES(s(x), y) -> EVEN(s(x))
IFTIMES(true, s(x), y) -> PLUS(times(half(s(x)), y), times(half(s(x)), y))
IFTIMES(true, s(x), y) -> TIMES(half(s(x)), y)
IFTIMES(true, s(x), y) -> HALF(s(x))
IFTIMES(false, s(x), y) -> PLUS(y, times(x, y))
IFTIMES(false, s(x), y) -> TIMES(x, y)

Furthermore, R contains four SCCs.

R
DPs
→DP Problem 1
Argument Filtering and Ordering
→DP Problem 2
AFS
→DP Problem 3
AFS
→DP Problem 4
AFS

Dependency Pair:

EVEN(s(s(x))) -> EVEN(x)

Rules:

even(0) -> true
even(s(0)) -> false
even(s(s(x))) -> even(x)
half(0) -> 0
half(s(s(x))) -> s(half(x))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
times(0, y) -> 0
times(s(x), y) -> iftimes(even(s(x)), s(x), y)
iftimes(true, s(x), y) -> plus(times(half(s(x)), y), times(half(s(x)), y))
iftimes(false, s(x), y) -> plus(y, times(x, y))

Strategy:

innermost

The following dependency pair can be strictly oriented:

EVEN(s(s(x))) -> EVEN(x)

There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
EVEN(x1) -> EVEN(x1)
s(x1) -> s(x1)

R
DPs
→DP Problem 1
AFS
→DP Problem 5
Dependency Graph
→DP Problem 2
AFS
→DP Problem 3
AFS
→DP Problem 4
AFS

Dependency Pair:

Rules:

even(0) -> true
even(s(0)) -> false
even(s(s(x))) -> even(x)
half(0) -> 0
half(s(s(x))) -> s(half(x))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
times(0, y) -> 0
times(s(x), y) -> iftimes(even(s(x)), s(x), y)
iftimes(true, s(x), y) -> plus(times(half(s(x)), y), times(half(s(x)), y))
iftimes(false, s(x), y) -> plus(y, times(x, y))

Strategy:

innermost

Using the Dependency Graph resulted in no new DP problems.

R
DPs
→DP Problem 1
AFS
→DP Problem 2
Argument Filtering and Ordering
→DP Problem 3
AFS
→DP Problem 4
AFS

Dependency Pair:

HALF(s(s(x))) -> HALF(x)

Rules:

even(0) -> true
even(s(0)) -> false
even(s(s(x))) -> even(x)
half(0) -> 0
half(s(s(x))) -> s(half(x))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
times(0, y) -> 0
times(s(x), y) -> iftimes(even(s(x)), s(x), y)
iftimes(true, s(x), y) -> plus(times(half(s(x)), y), times(half(s(x)), y))
iftimes(false, s(x), y) -> plus(y, times(x, y))

Strategy:

innermost

The following dependency pair can be strictly oriented:

HALF(s(s(x))) -> HALF(x)

There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
HALF(x1) -> HALF(x1)
s(x1) -> s(x1)

R
DPs
→DP Problem 1
AFS
→DP Problem 2
AFS
→DP Problem 6
Dependency Graph
→DP Problem 3
AFS
→DP Problem 4
AFS

Dependency Pair:

Rules:

even(0) -> true
even(s(0)) -> false
even(s(s(x))) -> even(x)
half(0) -> 0
half(s(s(x))) -> s(half(x))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
times(0, y) -> 0
times(s(x), y) -> iftimes(even(s(x)), s(x), y)
iftimes(true, s(x), y) -> plus(times(half(s(x)), y), times(half(s(x)), y))
iftimes(false, s(x), y) -> plus(y, times(x, y))

Strategy:

innermost

Using the Dependency Graph resulted in no new DP problems.

R
DPs
→DP Problem 1
AFS
→DP Problem 2
AFS
→DP Problem 3
Argument Filtering and Ordering
→DP Problem 4
AFS

Dependency Pair:

PLUS(s(x), y) -> PLUS(x, y)

Rules:

even(0) -> true
even(s(0)) -> false
even(s(s(x))) -> even(x)
half(0) -> 0
half(s(s(x))) -> s(half(x))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
times(0, y) -> 0
times(s(x), y) -> iftimes(even(s(x)), s(x), y)
iftimes(true, s(x), y) -> plus(times(half(s(x)), y), times(half(s(x)), y))
iftimes(false, s(x), y) -> plus(y, times(x, y))

Strategy:

innermost

The following dependency pair can be strictly oriented:

PLUS(s(x), y) -> PLUS(x, y)

There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
PLUS(x1, x2) -> PLUS(x1, x2)
s(x1) -> s(x1)

R
DPs
→DP Problem 1
AFS
→DP Problem 2
AFS
→DP Problem 3
AFS
→DP Problem 7
Dependency Graph
→DP Problem 4
AFS

Dependency Pair:

Rules:

even(0) -> true
even(s(0)) -> false
even(s(s(x))) -> even(x)
half(0) -> 0
half(s(s(x))) -> s(half(x))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
times(0, y) -> 0
times(s(x), y) -> iftimes(even(s(x)), s(x), y)
iftimes(true, s(x), y) -> plus(times(half(s(x)), y), times(half(s(x)), y))
iftimes(false, s(x), y) -> plus(y, times(x, y))

Strategy:

innermost

Using the Dependency Graph resulted in no new DP problems.

R
DPs
→DP Problem 1
AFS
→DP Problem 2
AFS
→DP Problem 3
AFS
→DP Problem 4
Argument Filtering and Ordering

Dependency Pairs:

IFTIMES(false, s(x), y) -> TIMES(x, y)
IFTIMES(true, s(x), y) -> TIMES(half(s(x)), y)
TIMES(s(x), y) -> IFTIMES(even(s(x)), s(x), y)

Rules:

even(0) -> true
even(s(0)) -> false
even(s(s(x))) -> even(x)
half(0) -> 0
half(s(s(x))) -> s(half(x))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
times(0, y) -> 0
times(s(x), y) -> iftimes(even(s(x)), s(x), y)
iftimes(true, s(x), y) -> plus(times(half(s(x)), y), times(half(s(x)), y))
iftimes(false, s(x), y) -> plus(y, times(x, y))

Strategy:

innermost

The following dependency pair can be strictly oriented:

IFTIMES(false, s(x), y) -> TIMES(x, y)

The following usable rules for innermost w.r.t. to the AFS can be oriented:

half(0) -> 0
half(s(s(x))) -> s(half(x))

Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
IFTIMES(x1, x2, x3) -> x2
s(x1) -> s(x1)
TIMES(x1, x2) -> x1
half(x1) -> x1

R
DPs
→DP Problem 1
AFS
→DP Problem 2
AFS
→DP Problem 3
AFS
→DP Problem 4
AFS
→DP Problem 8
Remaining Obligation(s)

The following remains to be proven:
Dependency Pairs:

IFTIMES(true, s(x), y) -> TIMES(half(s(x)), y)
TIMES(s(x), y) -> IFTIMES(even(s(x)), s(x), y)

Rules:

even(0) -> true
even(s(0)) -> false
even(s(s(x))) -> even(x)
half(0) -> 0
half(s(s(x))) -> s(half(x))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
times(0, y) -> 0
times(s(x), y) -> iftimes(even(s(x)), s(x), y)
iftimes(true, s(x), y) -> plus(times(half(s(x)), y), times(half(s(x)), y))
iftimes(false, s(x), y) -> plus(y, times(x, y))

Strategy:

innermost

Innermost Termination of R could not be shown.
Duration:
0:00 minutes