Term Rewriting System R:
[x]
half(0) -> 0
half(s(0)) -> 0
half(s(s(x))) -> s(half(x))
bits(0) -> 0
bits(s(x)) -> s(bits(half(s(x))))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

HALF(s(s(x))) -> HALF(x)
BITS(s(x)) -> BITS(half(s(x)))
BITS(s(x)) -> HALF(s(x))

Furthermore, R contains two SCCs.


   R
DPs
       →DP Problem 1
Forward Instantiation Transformation
       →DP Problem 2
Nar


Dependency Pair:

HALF(s(s(x))) -> HALF(x)


Rules:


half(0) -> 0
half(s(0)) -> 0
half(s(s(x))) -> s(half(x))
bits(0) -> 0
bits(s(x)) -> s(bits(half(s(x))))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

HALF(s(s(x))) -> HALF(x)
one new Dependency Pair is created:

HALF(s(s(s(s(x''))))) -> HALF(s(s(x'')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 3
Forward Instantiation Transformation
       →DP Problem 2
Nar


Dependency Pair:

HALF(s(s(s(s(x''))))) -> HALF(s(s(x'')))


Rules:


half(0) -> 0
half(s(0)) -> 0
half(s(s(x))) -> s(half(x))
bits(0) -> 0
bits(s(x)) -> s(bits(half(s(x))))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

HALF(s(s(s(s(x''))))) -> HALF(s(s(x'')))
one new Dependency Pair is created:

HALF(s(s(s(s(s(s(x''''))))))) -> HALF(s(s(s(s(x'''')))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 3
FwdInst
             ...
               →DP Problem 4
Polynomial Ordering
       →DP Problem 2
Nar


Dependency Pair:

HALF(s(s(s(s(s(s(x''''))))))) -> HALF(s(s(s(s(x'''')))))


Rules:


half(0) -> 0
half(s(0)) -> 0
half(s(s(x))) -> s(half(x))
bits(0) -> 0
bits(s(x)) -> s(bits(half(s(x))))


Strategy:

innermost




The following dependency pair can be strictly oriented:

HALF(s(s(s(s(s(s(x''''))))))) -> HALF(s(s(s(s(x'''')))))


There are no usable rules for innermost w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(HALF(x1))=  1 + x1  
  POL(s(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 3
FwdInst
             ...
               →DP Problem 5
Dependency Graph
       →DP Problem 2
Nar


Dependency Pair:


Rules:


half(0) -> 0
half(s(0)) -> 0
half(s(s(x))) -> s(half(x))
bits(0) -> 0
bits(s(x)) -> s(bits(half(s(x))))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Narrowing Transformation


Dependency Pair:

BITS(s(x)) -> BITS(half(s(x)))


Rules:


half(0) -> 0
half(s(0)) -> 0
half(s(s(x))) -> s(half(x))
bits(0) -> 0
bits(s(x)) -> s(bits(half(s(x))))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

BITS(s(x)) -> BITS(half(s(x)))
two new Dependency Pairs are created:

BITS(s(0)) -> BITS(0)
BITS(s(s(x''))) -> BITS(s(half(x'')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Narrowing Transformation


Dependency Pair:

BITS(s(s(x''))) -> BITS(s(half(x'')))


Rules:


half(0) -> 0
half(s(0)) -> 0
half(s(s(x))) -> s(half(x))
bits(0) -> 0
bits(s(x)) -> s(bits(half(s(x))))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

BITS(s(s(x''))) -> BITS(s(half(x'')))
three new Dependency Pairs are created:

BITS(s(s(0))) -> BITS(s(0))
BITS(s(s(s(0)))) -> BITS(s(0))
BITS(s(s(s(s(x'))))) -> BITS(s(s(half(x'))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Nar
             ...
               →DP Problem 7
Polynomial Ordering


Dependency Pair:

BITS(s(s(s(s(x'))))) -> BITS(s(s(half(x'))))


Rules:


half(0) -> 0
half(s(0)) -> 0
half(s(s(x))) -> s(half(x))
bits(0) -> 0
bits(s(x)) -> s(bits(half(s(x))))


Strategy:

innermost




The following dependency pair can be strictly oriented:

BITS(s(s(s(s(x'))))) -> BITS(s(s(half(x'))))


Additionally, the following usable rules for innermost w.r.t. to the implicit AFS can be oriented:

half(0) -> 0
half(s(0)) -> 0
half(s(s(x))) -> s(half(x))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(BITS(x1))=  1 + x1  
  POL(0)=  0  
  POL(s(x1))=  1 + x1  
  POL(half(x1))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Nar
             ...
               →DP Problem 8
Dependency Graph


Dependency Pair:


Rules:


half(0) -> 0
half(s(0)) -> 0
half(s(s(x))) -> s(half(x))
bits(0) -> 0
bits(s(x)) -> s(bits(half(s(x))))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:00 minutes