Term Rewriting System R:
[x, y]
p(0) -> 0
p(s(x)) -> x
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(x, s(y)) -> if(le(x, s(y)), 0, p(minus(x, p(s(y)))))
if(true, x, y) -> x
if(false, x, y) -> y

Innermost Termination of R to be shown.

`   R`
`     ↳Dependency Pair Analysis`

R contains the following Dependency Pairs:

LE(s(x), s(y)) -> LE(x, y)
MINUS(x, s(y)) -> IF(le(x, s(y)), 0, p(minus(x, p(s(y)))))
MINUS(x, s(y)) -> LE(x, s(y))
MINUS(x, s(y)) -> P(minus(x, p(s(y))))
MINUS(x, s(y)) -> MINUS(x, p(s(y)))
MINUS(x, s(y)) -> P(s(y))

Furthermore, R contains two SCCs.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Forward Instantiation Transformation`
`       →DP Problem 2`
`         ↳Rw`

Dependency Pair:

LE(s(x), s(y)) -> LE(x, y)

Rules:

p(0) -> 0
p(s(x)) -> x
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(x, s(y)) -> if(le(x, s(y)), 0, p(minus(x, p(s(y)))))
if(true, x, y) -> x
if(false, x, y) -> y

Strategy:

innermost

On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

LE(s(x), s(y)) -> LE(x, y)
one new Dependency Pair is created:

LE(s(s(x'')), s(s(y''))) -> LE(s(x''), s(y''))

The transformation is resulting in one new DP problem:

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳FwdInst`
`           →DP Problem 3`
`             ↳Forward Instantiation Transformation`
`       →DP Problem 2`
`         ↳Rw`

Dependency Pair:

LE(s(s(x'')), s(s(y''))) -> LE(s(x''), s(y''))

Rules:

p(0) -> 0
p(s(x)) -> x
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(x, s(y)) -> if(le(x, s(y)), 0, p(minus(x, p(s(y)))))
if(true, x, y) -> x
if(false, x, y) -> y

Strategy:

innermost

On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

LE(s(s(x'')), s(s(y''))) -> LE(s(x''), s(y''))
one new Dependency Pair is created:

LE(s(s(s(x''''))), s(s(s(y'''')))) -> LE(s(s(x'''')), s(s(y'''')))

The transformation is resulting in one new DP problem:

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳FwdInst`
`           →DP Problem 3`
`             ↳FwdInst`
`             ...`
`               →DP Problem 4`
`                 ↳Argument Filtering and Ordering`
`       →DP Problem 2`
`         ↳Rw`

Dependency Pair:

LE(s(s(s(x''''))), s(s(s(y'''')))) -> LE(s(s(x'''')), s(s(y'''')))

Rules:

p(0) -> 0
p(s(x)) -> x
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(x, s(y)) -> if(le(x, s(y)), 0, p(minus(x, p(s(y)))))
if(true, x, y) -> x
if(false, x, y) -> y

Strategy:

innermost

The following dependency pair can be strictly oriented:

LE(s(s(s(x''''))), s(s(s(y'''')))) -> LE(s(s(x'''')), s(s(y'''')))

There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(LE(x1, x2)) =  1 + x1 + x2 POL(s(x1)) =  1 + x1

resulting in one new DP problem.
Used Argument Filtering System:
LE(x1, x2) -> LE(x1, x2)
s(x1) -> s(x1)

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳FwdInst`
`           →DP Problem 3`
`             ↳FwdInst`
`             ...`
`               →DP Problem 5`
`                 ↳Dependency Graph`
`       →DP Problem 2`
`         ↳Rw`

Dependency Pair:

Rules:

p(0) -> 0
p(s(x)) -> x
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(x, s(y)) -> if(le(x, s(y)), 0, p(minus(x, p(s(y)))))
if(true, x, y) -> x
if(false, x, y) -> y

Strategy:

innermost

Using the Dependency Graph resulted in no new DP problems.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳FwdInst`
`       →DP Problem 2`
`         ↳Rewriting Transformation`

Dependency Pair:

MINUS(x, s(y)) -> MINUS(x, p(s(y)))

Rules:

p(0) -> 0
p(s(x)) -> x
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(x, s(y)) -> if(le(x, s(y)), 0, p(minus(x, p(s(y)))))
if(true, x, y) -> x
if(false, x, y) -> y

Strategy:

innermost

On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

MINUS(x, s(y)) -> MINUS(x, p(s(y)))
one new Dependency Pair is created:

MINUS(x, s(y)) -> MINUS(x, y)

The transformation is resulting in one new DP problem:

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳FwdInst`
`       →DP Problem 2`
`         ↳Rw`
`           →DP Problem 6`
`             ↳Forward Instantiation Transformation`

Dependency Pair:

MINUS(x, s(y)) -> MINUS(x, y)

Rules:

p(0) -> 0
p(s(x)) -> x
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(x, s(y)) -> if(le(x, s(y)), 0, p(minus(x, p(s(y)))))
if(true, x, y) -> x
if(false, x, y) -> y

Strategy:

innermost

On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

MINUS(x, s(y)) -> MINUS(x, y)
one new Dependency Pair is created:

MINUS(x'', s(s(y''))) -> MINUS(x'', s(y''))

The transformation is resulting in one new DP problem:

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳FwdInst`
`       →DP Problem 2`
`         ↳Rw`
`           →DP Problem 6`
`             ↳FwdInst`
`             ...`
`               →DP Problem 7`
`                 ↳Argument Filtering and Ordering`

Dependency Pair:

MINUS(x'', s(s(y''))) -> MINUS(x'', s(y''))

Rules:

p(0) -> 0
p(s(x)) -> x
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(x, s(y)) -> if(le(x, s(y)), 0, p(minus(x, p(s(y)))))
if(true, x, y) -> x
if(false, x, y) -> y

Strategy:

innermost

The following dependency pair can be strictly oriented:

MINUS(x'', s(s(y''))) -> MINUS(x'', s(y''))

There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(MINUS(x1, x2)) =  1 + x1 + x2 POL(s(x1)) =  1 + x1

resulting in one new DP problem.
Used Argument Filtering System:
MINUS(x1, x2) -> MINUS(x1, x2)
s(x1) -> s(x1)

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳FwdInst`
`       →DP Problem 2`
`         ↳Rw`
`           →DP Problem 6`
`             ↳FwdInst`
`             ...`
`               →DP Problem 8`
`                 ↳Dependency Graph`

Dependency Pair:

Rules:

p(0) -> 0
p(s(x)) -> x
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, 0) -> x
minus(x, s(y)) -> if(le(x, s(y)), 0, p(minus(x, p(s(y)))))
if(true, x, y) -> x
if(false, x, y) -> y

Strategy:

innermost

Using the Dependency Graph resulted in no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:00 minutes