R
↳Dependency Pair Analysis
LE(s(x), s(y)) -> LE(x, y)
MINUS(x, y) -> IF(le(x, y), x, y)
MINUS(x, y) -> LE(x, y)
IF(false, x, y) -> MINUS(p(x), y)
IF(false, x, y) -> P(x)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
→DP Problem 2
↳Nar
LE(s(x), s(y)) -> LE(x, y)
p(0) -> 0
p(s(x)) -> x
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, y) -> if(le(x, y), x, y)
if(true, x, y) -> 0
if(false, x, y) -> s(minus(p(x), y))
innermost
one new Dependency Pair is created:
LE(s(x), s(y)) -> LE(x, y)
LE(s(s(x'')), s(s(y''))) -> LE(s(x''), s(y''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳Forward Instantiation Transformation
→DP Problem 2
↳Nar
LE(s(s(x'')), s(s(y''))) -> LE(s(x''), s(y''))
p(0) -> 0
p(s(x)) -> x
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, y) -> if(le(x, y), x, y)
if(true, x, y) -> 0
if(false, x, y) -> s(minus(p(x), y))
innermost
one new Dependency Pair is created:
LE(s(s(x'')), s(s(y''))) -> LE(s(x''), s(y''))
LE(s(s(s(x''''))), s(s(s(y'''')))) -> LE(s(s(x'''')), s(s(y'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 4
↳Argument Filtering and Ordering
→DP Problem 2
↳Nar
LE(s(s(s(x''''))), s(s(s(y'''')))) -> LE(s(s(x'''')), s(s(y'''')))
p(0) -> 0
p(s(x)) -> x
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, y) -> if(le(x, y), x, y)
if(true, x, y) -> 0
if(false, x, y) -> s(minus(p(x), y))
innermost
LE(s(s(s(x''''))), s(s(s(y'''')))) -> LE(s(s(x'''')), s(s(y'''')))
LE(x1, x2) -> LE(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 5
↳Dependency Graph
→DP Problem 2
↳Nar
p(0) -> 0
p(s(x)) -> x
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, y) -> if(le(x, y), x, y)
if(true, x, y) -> 0
if(false, x, y) -> s(minus(p(x), y))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Narrowing Transformation
IF(false, x, y) -> MINUS(p(x), y)
MINUS(x, y) -> IF(le(x, y), x, y)
p(0) -> 0
p(s(x)) -> x
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, y) -> if(le(x, y), x, y)
if(true, x, y) -> 0
if(false, x, y) -> s(minus(p(x), y))
innermost
three new Dependency Pairs are created:
MINUS(x, y) -> IF(le(x, y), x, y)
MINUS(0, y'') -> IF(true, 0, y'')
MINUS(s(x''), 0) -> IF(false, s(x''), 0)
MINUS(s(x''), s(y'')) -> IF(le(x'', y''), s(x''), s(y''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Narrowing Transformation
MINUS(s(x''), s(y'')) -> IF(le(x'', y''), s(x''), s(y''))
MINUS(s(x''), 0) -> IF(false, s(x''), 0)
IF(false, x, y) -> MINUS(p(x), y)
p(0) -> 0
p(s(x)) -> x
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, y) -> if(le(x, y), x, y)
if(true, x, y) -> 0
if(false, x, y) -> s(minus(p(x), y))
innermost
two new Dependency Pairs are created:
IF(false, x, y) -> MINUS(p(x), y)
IF(false, 0, y) -> MINUS(0, y)
IF(false, s(x''), y) -> MINUS(x'', y)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 7
↳Narrowing Transformation
MINUS(s(x''), 0) -> IF(false, s(x''), 0)
IF(false, s(x''), y) -> MINUS(x'', y)
MINUS(s(x''), s(y'')) -> IF(le(x'', y''), s(x''), s(y''))
p(0) -> 0
p(s(x)) -> x
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, y) -> if(le(x, y), x, y)
if(true, x, y) -> 0
if(false, x, y) -> s(minus(p(x), y))
innermost
three new Dependency Pairs are created:
MINUS(s(x''), s(y'')) -> IF(le(x'', y''), s(x''), s(y''))
MINUS(s(0), s(y''')) -> IF(true, s(0), s(y'''))
MINUS(s(s(x')), s(0)) -> IF(false, s(s(x')), s(0))
MINUS(s(s(x')), s(s(y'))) -> IF(le(x', y'), s(s(x')), s(s(y')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 8
↳Instantiation Transformation
MINUS(s(s(x')), s(s(y'))) -> IF(le(x', y'), s(s(x')), s(s(y')))
MINUS(s(s(x')), s(0)) -> IF(false, s(s(x')), s(0))
IF(false, s(x''), y) -> MINUS(x'', y)
MINUS(s(x''), 0) -> IF(false, s(x''), 0)
p(0) -> 0
p(s(x)) -> x
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, y) -> if(le(x, y), x, y)
if(true, x, y) -> 0
if(false, x, y) -> s(minus(p(x), y))
innermost
three new Dependency Pairs are created:
IF(false, s(x''), y) -> MINUS(x'', y)
IF(false, s(x''''), 0) -> MINUS(x'''', 0)
IF(false, s(s(x'''')), s(0)) -> MINUS(s(x''''), s(0))
IF(false, s(s(x'''')), s(s(y'''))) -> MINUS(s(x''''), s(s(y''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 9
↳Narrowing Transformation
IF(false, s(s(x'''')), s(s(y'''))) -> MINUS(s(x''''), s(s(y''')))
MINUS(s(s(x')), s(s(y'))) -> IF(le(x', y'), s(s(x')), s(s(y')))
p(0) -> 0
p(s(x)) -> x
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, y) -> if(le(x, y), x, y)
if(true, x, y) -> 0
if(false, x, y) -> s(minus(p(x), y))
innermost
three new Dependency Pairs are created:
MINUS(s(s(x')), s(s(y'))) -> IF(le(x', y'), s(s(x')), s(s(y')))
MINUS(s(s(0)), s(s(y''))) -> IF(true, s(s(0)), s(s(y'')))
MINUS(s(s(s(x''))), s(s(0))) -> IF(false, s(s(s(x''))), s(s(0)))
MINUS(s(s(s(x''))), s(s(s(y'')))) -> IF(le(x'', y''), s(s(s(x''))), s(s(s(y''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 14
↳Narrowing Transformation
MINUS(s(s(s(x''))), s(s(s(y'')))) -> IF(le(x'', y''), s(s(s(x''))), s(s(s(y''))))
MINUS(s(s(s(x''))), s(s(0))) -> IF(false, s(s(s(x''))), s(s(0)))
IF(false, s(s(x'''')), s(s(y'''))) -> MINUS(s(x''''), s(s(y''')))
p(0) -> 0
p(s(x)) -> x
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, y) -> if(le(x, y), x, y)
if(true, x, y) -> 0
if(false, x, y) -> s(minus(p(x), y))
innermost
three new Dependency Pairs are created:
MINUS(s(s(s(x''))), s(s(s(y'')))) -> IF(le(x'', y''), s(s(s(x''))), s(s(s(y''))))
MINUS(s(s(s(0))), s(s(s(y''')))) -> IF(true, s(s(s(0))), s(s(s(y'''))))
MINUS(s(s(s(s(x')))), s(s(s(0)))) -> IF(false, s(s(s(s(x')))), s(s(s(0))))
MINUS(s(s(s(s(x')))), s(s(s(s(y'))))) -> IF(le(x', y'), s(s(s(s(x')))), s(s(s(s(y')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 15
↳Narrowing Transformation
MINUS(s(s(s(s(x')))), s(s(s(s(y'))))) -> IF(le(x', y'), s(s(s(s(x')))), s(s(s(s(y')))))
MINUS(s(s(s(s(x')))), s(s(s(0)))) -> IF(false, s(s(s(s(x')))), s(s(s(0))))
IF(false, s(s(x'''')), s(s(y'''))) -> MINUS(s(x''''), s(s(y''')))
MINUS(s(s(s(x''))), s(s(0))) -> IF(false, s(s(s(x''))), s(s(0)))
p(0) -> 0
p(s(x)) -> x
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, y) -> if(le(x, y), x, y)
if(true, x, y) -> 0
if(false, x, y) -> s(minus(p(x), y))
innermost
three new Dependency Pairs are created:
MINUS(s(s(s(s(x')))), s(s(s(s(y'))))) -> IF(le(x', y'), s(s(s(s(x')))), s(s(s(s(y')))))
MINUS(s(s(s(s(0)))), s(s(s(s(y''))))) -> IF(true, s(s(s(s(0)))), s(s(s(s(y'')))))
MINUS(s(s(s(s(s(x''))))), s(s(s(s(0))))) -> IF(false, s(s(s(s(s(x''))))), s(s(s(s(0)))))
MINUS(s(s(s(s(s(x''))))), s(s(s(s(s(y'')))))) -> IF(le(x'', y''), s(s(s(s(s(x''))))), s(s(s(s(s(y''))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 16
↳Instantiation Transformation
MINUS(s(s(s(s(s(x''))))), s(s(s(s(s(y'')))))) -> IF(le(x'', y''), s(s(s(s(s(x''))))), s(s(s(s(s(y''))))))
MINUS(s(s(s(s(s(x''))))), s(s(s(s(0))))) -> IF(false, s(s(s(s(s(x''))))), s(s(s(s(0)))))
MINUS(s(s(s(x''))), s(s(0))) -> IF(false, s(s(s(x''))), s(s(0)))
IF(false, s(s(x'''')), s(s(y'''))) -> MINUS(s(x''''), s(s(y''')))
MINUS(s(s(s(s(x')))), s(s(s(0)))) -> IF(false, s(s(s(s(x')))), s(s(s(0))))
p(0) -> 0
p(s(x)) -> x
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, y) -> if(le(x, y), x, y)
if(true, x, y) -> 0
if(false, x, y) -> s(minus(p(x), y))
innermost
four new Dependency Pairs are created:
IF(false, s(s(x'''')), s(s(y'''))) -> MINUS(s(x''''), s(s(y''')))
IF(false, s(s(s(x'''''))), s(s(0))) -> MINUS(s(s(x''''')), s(s(0)))
IF(false, s(s(s(s(x''')))), s(s(s(0)))) -> MINUS(s(s(s(x'''))), s(s(s(0))))
IF(false, s(s(s(s(s(x'''''))))), s(s(s(s(0))))) -> MINUS(s(s(s(s(x''''')))), s(s(s(s(0)))))
IF(false, s(s(s(s(s(x'''''))))), s(s(s(s(s(y''''')))))) -> MINUS(s(s(s(s(x''''')))), s(s(s(s(s(y'''''))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 17
↳Forward Instantiation Transformation
IF(false, s(s(s(s(s(x'''''))))), s(s(s(s(s(y''''')))))) -> MINUS(s(s(s(s(x''''')))), s(s(s(s(s(y'''''))))))
MINUS(s(s(s(s(s(x''))))), s(s(s(s(s(y'')))))) -> IF(le(x'', y''), s(s(s(s(s(x''))))), s(s(s(s(s(y''))))))
p(0) -> 0
p(s(x)) -> x
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, y) -> if(le(x, y), x, y)
if(true, x, y) -> 0
if(false, x, y) -> s(minus(p(x), y))
innermost
one new Dependency Pair is created:
IF(false, s(s(s(s(s(x'''''))))), s(s(s(s(s(y''''')))))) -> MINUS(s(s(s(s(x''''')))), s(s(s(s(s(y'''''))))))
IF(false, s(s(s(s(s(s(x'''')))))), s(s(s(s(s(y'''''')))))) -> MINUS(s(s(s(s(s(x''''))))), s(s(s(s(s(y''''''))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 21
↳Remaining Obligation(s)
IF(false, s(s(s(s(s(s(x'''')))))), s(s(s(s(s(y'''''')))))) -> MINUS(s(s(s(s(s(x''''))))), s(s(s(s(s(y''''''))))))
MINUS(s(s(s(s(s(x''))))), s(s(s(s(s(y'')))))) -> IF(le(x'', y''), s(s(s(s(s(x''))))), s(s(s(s(s(y''))))))
p(0) -> 0
p(s(x)) -> x
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, y) -> if(le(x, y), x, y)
if(true, x, y) -> 0
if(false, x, y) -> s(minus(p(x), y))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 18
↳Forward Instantiation Transformation
IF(false, s(s(s(s(s(x'''''))))), s(s(s(s(0))))) -> MINUS(s(s(s(s(x''''')))), s(s(s(s(0)))))
MINUS(s(s(s(s(s(x''))))), s(s(s(s(0))))) -> IF(false, s(s(s(s(s(x''))))), s(s(s(s(0)))))
p(0) -> 0
p(s(x)) -> x
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, y) -> if(le(x, y), x, y)
if(true, x, y) -> 0
if(false, x, y) -> s(minus(p(x), y))
innermost
one new Dependency Pair is created:
IF(false, s(s(s(s(s(x'''''))))), s(s(s(s(0))))) -> MINUS(s(s(s(s(x''''')))), s(s(s(s(0)))))
IF(false, s(s(s(s(s(s(x'''')))))), s(s(s(s(0))))) -> MINUS(s(s(s(s(s(x''''))))), s(s(s(s(0)))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 22
↳Argument Filtering and Ordering
IF(false, s(s(s(s(s(s(x'''')))))), s(s(s(s(0))))) -> MINUS(s(s(s(s(s(x''''))))), s(s(s(s(0)))))
MINUS(s(s(s(s(s(x''))))), s(s(s(s(0))))) -> IF(false, s(s(s(s(s(x''))))), s(s(s(s(0)))))
p(0) -> 0
p(s(x)) -> x
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, y) -> if(le(x, y), x, y)
if(true, x, y) -> 0
if(false, x, y) -> s(minus(p(x), y))
innermost
IF(false, s(s(s(s(s(s(x'''')))))), s(s(s(s(0))))) -> MINUS(s(s(s(s(s(x''''))))), s(s(s(s(0)))))
MINUS(x1, x2) -> x1
s(x1) -> s(x1)
IF(x1, x2, x3) -> x2
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 30
↳Dependency Graph
MINUS(s(s(s(s(s(x''))))), s(s(s(s(0))))) -> IF(false, s(s(s(s(s(x''))))), s(s(s(s(0)))))
p(0) -> 0
p(s(x)) -> x
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, y) -> if(le(x, y), x, y)
if(true, x, y) -> 0
if(false, x, y) -> s(minus(p(x), y))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 19
↳Forward Instantiation Transformation
IF(false, s(s(s(x'''''))), s(s(0))) -> MINUS(s(s(x''''')), s(s(0)))
MINUS(s(s(s(x''))), s(s(0))) -> IF(false, s(s(s(x''))), s(s(0)))
p(0) -> 0
p(s(x)) -> x
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, y) -> if(le(x, y), x, y)
if(true, x, y) -> 0
if(false, x, y) -> s(minus(p(x), y))
innermost
one new Dependency Pair is created:
IF(false, s(s(s(x'''''))), s(s(0))) -> MINUS(s(s(x''''')), s(s(0)))
IF(false, s(s(s(s(x'''')))), s(s(0))) -> MINUS(s(s(s(x''''))), s(s(0)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 23
↳Forward Instantiation Transformation
IF(false, s(s(s(s(x'''')))), s(s(0))) -> MINUS(s(s(s(x''''))), s(s(0)))
MINUS(s(s(s(x''))), s(s(0))) -> IF(false, s(s(s(x''))), s(s(0)))
p(0) -> 0
p(s(x)) -> x
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, y) -> if(le(x, y), x, y)
if(true, x, y) -> 0
if(false, x, y) -> s(minus(p(x), y))
innermost
one new Dependency Pair is created:
MINUS(s(s(s(x''))), s(s(0))) -> IF(false, s(s(s(x''))), s(s(0)))
MINUS(s(s(s(s(x'''''')))), s(s(0))) -> IF(false, s(s(s(s(x'''''')))), s(s(0)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 25
↳Forward Instantiation Transformation
MINUS(s(s(s(s(x'''''')))), s(s(0))) -> IF(false, s(s(s(s(x'''''')))), s(s(0)))
IF(false, s(s(s(s(x'''')))), s(s(0))) -> MINUS(s(s(s(x''''))), s(s(0)))
p(0) -> 0
p(s(x)) -> x
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, y) -> if(le(x, y), x, y)
if(true, x, y) -> 0
if(false, x, y) -> s(minus(p(x), y))
innermost
one new Dependency Pair is created:
IF(false, s(s(s(s(x'''')))), s(s(0))) -> MINUS(s(s(s(x''''))), s(s(0)))
IF(false, s(s(s(s(s(x''''''''))))), s(s(0))) -> MINUS(s(s(s(s(x'''''''')))), s(s(0)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 27
↳Forward Instantiation Transformation
IF(false, s(s(s(s(s(x''''''''))))), s(s(0))) -> MINUS(s(s(s(s(x'''''''')))), s(s(0)))
MINUS(s(s(s(s(x'''''')))), s(s(0))) -> IF(false, s(s(s(s(x'''''')))), s(s(0)))
p(0) -> 0
p(s(x)) -> x
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, y) -> if(le(x, y), x, y)
if(true, x, y) -> 0
if(false, x, y) -> s(minus(p(x), y))
innermost
one new Dependency Pair is created:
MINUS(s(s(s(s(x'''''')))), s(s(0))) -> IF(false, s(s(s(s(x'''''')))), s(s(0)))
MINUS(s(s(s(s(s(x''''''''''))))), s(s(0))) -> IF(false, s(s(s(s(s(x''''''''''))))), s(s(0)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 29
↳Argument Filtering and Ordering
MINUS(s(s(s(s(s(x''''''''''))))), s(s(0))) -> IF(false, s(s(s(s(s(x''''''''''))))), s(s(0)))
IF(false, s(s(s(s(s(x''''''''))))), s(s(0))) -> MINUS(s(s(s(s(x'''''''')))), s(s(0)))
p(0) -> 0
p(s(x)) -> x
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, y) -> if(le(x, y), x, y)
if(true, x, y) -> 0
if(false, x, y) -> s(minus(p(x), y))
innermost
IF(false, s(s(s(s(s(x''''''''))))), s(s(0))) -> MINUS(s(s(s(s(x'''''''')))), s(s(0)))
MINUS(x1, x2) -> x1
s(x1) -> s(x1)
IF(x1, x2, x3) -> x2
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 32
↳Dependency Graph
MINUS(s(s(s(s(s(x''''''''''))))), s(s(0))) -> IF(false, s(s(s(s(s(x''''''''''))))), s(s(0)))
p(0) -> 0
p(s(x)) -> x
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, y) -> if(le(x, y), x, y)
if(true, x, y) -> 0
if(false, x, y) -> s(minus(p(x), y))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 20
↳Forward Instantiation Transformation
IF(false, s(s(s(s(x''')))), s(s(s(0)))) -> MINUS(s(s(s(x'''))), s(s(s(0))))
MINUS(s(s(s(s(x')))), s(s(s(0)))) -> IF(false, s(s(s(s(x')))), s(s(s(0))))
p(0) -> 0
p(s(x)) -> x
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, y) -> if(le(x, y), x, y)
if(true, x, y) -> 0
if(false, x, y) -> s(minus(p(x), y))
innermost
one new Dependency Pair is created:
IF(false, s(s(s(s(x''')))), s(s(s(0)))) -> MINUS(s(s(s(x'''))), s(s(s(0))))
IF(false, s(s(s(s(s(x''''))))), s(s(s(0)))) -> MINUS(s(s(s(s(x'''')))), s(s(s(0))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 24
↳Forward Instantiation Transformation
IF(false, s(s(s(s(s(x''''))))), s(s(s(0)))) -> MINUS(s(s(s(s(x'''')))), s(s(s(0))))
MINUS(s(s(s(s(x')))), s(s(s(0)))) -> IF(false, s(s(s(s(x')))), s(s(s(0))))
p(0) -> 0
p(s(x)) -> x
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, y) -> if(le(x, y), x, y)
if(true, x, y) -> 0
if(false, x, y) -> s(minus(p(x), y))
innermost
one new Dependency Pair is created:
MINUS(s(s(s(s(x')))), s(s(s(0)))) -> IF(false, s(s(s(s(x')))), s(s(s(0))))
MINUS(s(s(s(s(s(x''''''))))), s(s(s(0)))) -> IF(false, s(s(s(s(s(x''''''))))), s(s(s(0))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 26
↳Forward Instantiation Transformation
MINUS(s(s(s(s(s(x''''''))))), s(s(s(0)))) -> IF(false, s(s(s(s(s(x''''''))))), s(s(s(0))))
IF(false, s(s(s(s(s(x''''))))), s(s(s(0)))) -> MINUS(s(s(s(s(x'''')))), s(s(s(0))))
p(0) -> 0
p(s(x)) -> x
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, y) -> if(le(x, y), x, y)
if(true, x, y) -> 0
if(false, x, y) -> s(minus(p(x), y))
innermost
one new Dependency Pair is created:
IF(false, s(s(s(s(s(x''''))))), s(s(s(0)))) -> MINUS(s(s(s(s(x'''')))), s(s(s(0))))
IF(false, s(s(s(s(s(s(x'''''''')))))), s(s(s(0)))) -> MINUS(s(s(s(s(s(x''''''''))))), s(s(s(0))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 28
↳Argument Filtering and Ordering
IF(false, s(s(s(s(s(s(x'''''''')))))), s(s(s(0)))) -> MINUS(s(s(s(s(s(x''''''''))))), s(s(s(0))))
MINUS(s(s(s(s(s(x''''''))))), s(s(s(0)))) -> IF(false, s(s(s(s(s(x''''''))))), s(s(s(0))))
p(0) -> 0
p(s(x)) -> x
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, y) -> if(le(x, y), x, y)
if(true, x, y) -> 0
if(false, x, y) -> s(minus(p(x), y))
innermost
IF(false, s(s(s(s(s(s(x'''''''')))))), s(s(s(0)))) -> MINUS(s(s(s(s(s(x''''''''))))), s(s(s(0))))
MINUS(x1, x2) -> x1
s(x1) -> s(x1)
IF(x1, x2, x3) -> x2
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 31
↳Dependency Graph
MINUS(s(s(s(s(s(x''''''))))), s(s(s(0)))) -> IF(false, s(s(s(s(s(x''''''))))), s(s(s(0))))
p(0) -> 0
p(s(x)) -> x
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, y) -> if(le(x, y), x, y)
if(true, x, y) -> 0
if(false, x, y) -> s(minus(p(x), y))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 10
↳Argument Filtering and Ordering
IF(false, s(s(x'''')), s(0)) -> MINUS(s(x''''), s(0))
MINUS(s(s(x')), s(0)) -> IF(false, s(s(x')), s(0))
p(0) -> 0
p(s(x)) -> x
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, y) -> if(le(x, y), x, y)
if(true, x, y) -> 0
if(false, x, y) -> s(minus(p(x), y))
innermost
IF(false, s(s(x'''')), s(0)) -> MINUS(s(x''''), s(0))
MINUS(x1, x2) -> x1
s(x1) -> s(x1)
IF(x1, x2, x3) -> x2
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 12
↳Dependency Graph
MINUS(s(s(x')), s(0)) -> IF(false, s(s(x')), s(0))
p(0) -> 0
p(s(x)) -> x
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, y) -> if(le(x, y), x, y)
if(true, x, y) -> 0
if(false, x, y) -> s(minus(p(x), y))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 11
↳Argument Filtering and Ordering
IF(false, s(x''''), 0) -> MINUS(x'''', 0)
MINUS(s(x''), 0) -> IF(false, s(x''), 0)
p(0) -> 0
p(s(x)) -> x
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, y) -> if(le(x, y), x, y)
if(true, x, y) -> 0
if(false, x, y) -> s(minus(p(x), y))
innermost
IF(false, s(x''''), 0) -> MINUS(x'''', 0)
IF(x1, x2, x3) -> x2
s(x1) -> s(x1)
MINUS(x1, x2) -> x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 13
↳Dependency Graph
MINUS(s(x''), 0) -> IF(false, s(x''), 0)
p(0) -> 0
p(s(x)) -> x
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, y) -> if(le(x, y), x, y)
if(true, x, y) -> 0
if(false, x, y) -> s(minus(p(x), y))
innermost