R
↳Dependency Pair Analysis
QUOT(s(x), s(y), z) -> QUOT(x, y, z)
QUOT(x, 0, s(z)) -> QUOT(x, plus(z, s(0)), s(z))
QUOT(x, 0, s(z)) -> PLUS(z, s(0))
PLUS(s(x), y) -> PLUS(x, y)
R
↳DPs
→DP Problem 1
↳Usable Rules (Innermost)
→DP Problem 2
↳UsableRules
PLUS(s(x), y) -> PLUS(x, y)
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 3
↳Size-Change Principle
→DP Problem 2
↳UsableRules
PLUS(s(x), y) -> PLUS(x, y)
none
innermost
|
|
trivial
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳Usable Rules (Innermost)
QUOT(x, 0, s(z)) -> QUOT(x, plus(z, s(0)), s(z))
QUOT(s(x), s(y), z) -> QUOT(x, y, z)
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 4
↳Negative Polynomial Order
QUOT(x, 0, s(z)) -> QUOT(x, plus(z, s(0)), s(z))
QUOT(s(x), s(y), z) -> QUOT(x, y, z)
plus(s(x), y) -> s(plus(x, y))
plus(0, y) -> y
innermost
QUOT(s(x), s(y), z) -> QUOT(x, y, z)
plus(s(x), y) -> s(plus(x, y))
plus(0, y) -> y
POL( QUOT(x1, ..., x3) ) = x1
POL( s(x1) ) = x1 + 1
POL( plus(x1, x2) ) = x1 + x2
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 4
↳Neg POLO
...
→DP Problem 5
↳Narrowing Transformation
QUOT(x, 0, s(z)) -> QUOT(x, plus(z, s(0)), s(z))
plus(s(x), y) -> s(plus(x, y))
plus(0, y) -> y
innermost
two new Dependency Pairs are created:
QUOT(x, 0, s(z)) -> QUOT(x, plus(z, s(0)), s(z))
QUOT(x, 0, s(s(x''))) -> QUOT(x, s(plus(x'', s(0))), s(s(x'')))
QUOT(x, 0, s(0)) -> QUOT(x, s(0), s(0))