R
↳Dependency Pair Analysis
QUOT(s(x), s(y), z) -> QUOT(x, y, z)
QUOT(x, 0, s(z)) -> QUOT(x, plus(z, s(0)), s(z))
QUOT(x, 0, s(z)) -> PLUS(z, s(0))
PLUS(s(x), y) -> PLUS(x, y)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
→DP Problem 2
↳Nar
PLUS(s(x), y) -> PLUS(x, y)
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
innermost
one new Dependency Pair is created:
PLUS(s(x), y) -> PLUS(x, y)
PLUS(s(s(x'')), y'') -> PLUS(s(x''), y'')
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳Forward Instantiation Transformation
→DP Problem 2
↳Nar
PLUS(s(s(x'')), y'') -> PLUS(s(x''), y'')
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
innermost
one new Dependency Pair is created:
PLUS(s(s(x'')), y'') -> PLUS(s(x''), y'')
PLUS(s(s(s(x''''))), y'''') -> PLUS(s(s(x'''')), y'''')
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 4
↳Polynomial Ordering
→DP Problem 2
↳Nar
PLUS(s(s(s(x''''))), y'''') -> PLUS(s(s(x'''')), y'''')
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
innermost
PLUS(s(s(s(x''''))), y'''') -> PLUS(s(s(x'''')), y'''')
POL(PLUS(x1, x2)) = 1 + x1 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 5
↳Dependency Graph
→DP Problem 2
↳Nar
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Narrowing Transformation
QUOT(x, 0, s(z)) -> QUOT(x, plus(z, s(0)), s(z))
QUOT(s(x), s(y), z) -> QUOT(x, y, z)
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
innermost
two new Dependency Pairs are created:
QUOT(x, 0, s(z)) -> QUOT(x, plus(z, s(0)), s(z))
QUOT(x, 0, s(0)) -> QUOT(x, s(0), s(0))
QUOT(x, 0, s(s(x''))) -> QUOT(x, s(plus(x'', s(0))), s(s(x'')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Forward Instantiation Transformation
QUOT(x, 0, s(s(x''))) -> QUOT(x, s(plus(x'', s(0))), s(s(x'')))
QUOT(x, 0, s(0)) -> QUOT(x, s(0), s(0))
QUOT(s(x), s(y), z) -> QUOT(x, y, z)
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
innermost
three new Dependency Pairs are created:
QUOT(s(x), s(y), z) -> QUOT(x, y, z)
QUOT(s(s(x'')), s(s(y'')), z'') -> QUOT(s(x''), s(y''), z'')
QUOT(s(x''), s(0), s(0)) -> QUOT(x'', 0, s(0))
QUOT(s(x''), s(0), s(s(x''''))) -> QUOT(x'', 0, s(s(x'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳FwdInst
...
→DP Problem 7
↳Forward Instantiation Transformation
QUOT(x, 0, s(0)) -> QUOT(x, s(0), s(0))
QUOT(s(x''), s(0), s(0)) -> QUOT(x'', 0, s(0))
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
innermost
one new Dependency Pair is created:
QUOT(x, 0, s(0)) -> QUOT(x, s(0), s(0))
QUOT(s(x''''), 0, s(0)) -> QUOT(s(x''''), s(0), s(0))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳FwdInst
...
→DP Problem 9
↳Forward Instantiation Transformation
QUOT(s(x''''), 0, s(0)) -> QUOT(s(x''''), s(0), s(0))
QUOT(s(x''), s(0), s(0)) -> QUOT(x'', 0, s(0))
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
innermost
one new Dependency Pair is created:
QUOT(s(x''), s(0), s(0)) -> QUOT(x'', 0, s(0))
QUOT(s(s(x'''''')), s(0), s(0)) -> QUOT(s(x''''''), 0, s(0))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳FwdInst
...
→DP Problem 11
↳Polynomial Ordering
QUOT(s(s(x'''''')), s(0), s(0)) -> QUOT(s(x''''''), 0, s(0))
QUOT(s(x''''), 0, s(0)) -> QUOT(s(x''''), s(0), s(0))
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
innermost
QUOT(s(s(x'''''')), s(0), s(0)) -> QUOT(s(x''''''), 0, s(0))
POL(QUOT(x1, x2, x3)) = x1 + x3 POL(0) = 0 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳FwdInst
...
→DP Problem 14
↳Dependency Graph
QUOT(s(x''''), 0, s(0)) -> QUOT(s(x''''), s(0), s(0))
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳FwdInst
...
→DP Problem 8
↳Narrowing Transformation
QUOT(s(x''), s(0), s(s(x''''))) -> QUOT(x'', 0, s(s(x'''')))
QUOT(s(s(x'')), s(s(y'')), z'') -> QUOT(s(x''), s(y''), z'')
QUOT(x, 0, s(s(x''))) -> QUOT(x, s(plus(x'', s(0))), s(s(x'')))
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
innermost
two new Dependency Pairs are created:
QUOT(x, 0, s(s(x''))) -> QUOT(x, s(plus(x'', s(0))), s(s(x'')))
QUOT(x, 0, s(s(0))) -> QUOT(x, s(s(0)), s(s(0)))
QUOT(x, 0, s(s(s(x''')))) -> QUOT(x, s(s(plus(x''', s(0)))), s(s(s(x'''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳FwdInst
...
→DP Problem 10
↳Forward Instantiation Transformation
QUOT(x, 0, s(s(s(x''')))) -> QUOT(x, s(s(plus(x''', s(0)))), s(s(s(x'''))))
QUOT(s(s(x'')), s(s(y'')), z'') -> QUOT(s(x''), s(y''), z'')
QUOT(x, 0, s(s(0))) -> QUOT(x, s(s(0)), s(s(0)))
QUOT(s(x''), s(0), s(s(x''''))) -> QUOT(x'', 0, s(s(x'''')))
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
innermost
two new Dependency Pairs are created:
QUOT(s(s(x'')), s(s(y'')), z'') -> QUOT(s(x''), s(y''), z'')
QUOT(s(s(s(x''''))), s(s(s(y''''))), z'''') -> QUOT(s(s(x'''')), s(s(y'''')), z'''')
QUOT(s(s(x'''')), s(s(0)), s(s(x''''''))) -> QUOT(s(x''''), s(0), s(s(x'''''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳FwdInst
...
→DP Problem 12
↳Forward Instantiation Transformation
QUOT(x, 0, s(s(0))) -> QUOT(x, s(s(0)), s(s(0)))
QUOT(s(x''), s(0), s(s(x''''))) -> QUOT(x'', 0, s(s(x'''')))
QUOT(s(s(x'''')), s(s(0)), s(s(x''''''))) -> QUOT(s(x''''), s(0), s(s(x'''''')))
QUOT(s(s(s(x''''))), s(s(s(y''''))), z'''') -> QUOT(s(s(x'''')), s(s(y'''')), z'''')
QUOT(x, 0, s(s(s(x''')))) -> QUOT(x, s(s(plus(x''', s(0)))), s(s(s(x'''))))
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
innermost
two new Dependency Pairs are created:
QUOT(s(x''), s(0), s(s(x''''))) -> QUOT(x'', 0, s(s(x'''')))
QUOT(s(x'''), s(0), s(s(0))) -> QUOT(x''', 0, s(s(0)))
QUOT(s(x'''), s(0), s(s(s(x'''''')))) -> QUOT(x''', 0, s(s(s(x''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳FwdInst
...
→DP Problem 13
↳Polynomial Ordering
QUOT(s(s(s(x''''))), s(s(s(y''''))), z'''') -> QUOT(s(s(x'''')), s(s(y'''')), z'''')
QUOT(x, 0, s(s(s(x''')))) -> QUOT(x, s(s(plus(x''', s(0)))), s(s(s(x'''))))
QUOT(s(x'''), s(0), s(s(s(x'''''')))) -> QUOT(x''', 0, s(s(s(x''''''))))
QUOT(s(x'''), s(0), s(s(0))) -> QUOT(x''', 0, s(s(0)))
QUOT(s(s(x'''')), s(s(0)), s(s(x''''''))) -> QUOT(s(x''''), s(0), s(s(x'''''')))
QUOT(x, 0, s(s(0))) -> QUOT(x, s(s(0)), s(s(0)))
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
innermost
QUOT(s(s(s(x''''))), s(s(s(y''''))), z'''') -> QUOT(s(s(x'''')), s(s(y'''')), z'''')
QUOT(s(x'''), s(0), s(s(s(x'''''')))) -> QUOT(x''', 0, s(s(s(x''''''))))
QUOT(s(x'''), s(0), s(s(0))) -> QUOT(x''', 0, s(s(0)))
QUOT(s(s(x'''')), s(s(0)), s(s(x''''''))) -> QUOT(s(x''''), s(0), s(s(x'''''')))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
POL(plus(x1, x2)) = x1 + x2 POL(QUOT(x1, x2, x3)) = x1 + x3 POL(0) = 0 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳FwdInst
...
→DP Problem 15
↳Dependency Graph
QUOT(x, 0, s(s(s(x''')))) -> QUOT(x, s(s(plus(x''', s(0)))), s(s(s(x'''))))
QUOT(x, 0, s(s(0))) -> QUOT(x, s(s(0)), s(s(0)))
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
innermost