R
↳Dependency Pair Analysis
QUOT(s(x), s(y), z) -> QUOT(x, y, z)
QUOT(x, 0, s(z)) -> QUOT(x, plus(z, s(0)), s(z))
QUOT(x, 0, s(z)) -> PLUS(z, s(0))
PLUS(s(x), y) -> PLUS(x, y)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
→DP Problem 2
↳Nar
PLUS(s(x), y) -> PLUS(x, y)
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
innermost
one new Dependency Pair is created:
PLUS(s(x), y) -> PLUS(x, y)
PLUS(s(s(x'')), y'') -> PLUS(s(x''), y'')
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳Forward Instantiation Transformation
→DP Problem 2
↳Nar
PLUS(s(s(x'')), y'') -> PLUS(s(x''), y'')
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
innermost
one new Dependency Pair is created:
PLUS(s(s(x'')), y'') -> PLUS(s(x''), y'')
PLUS(s(s(s(x''''))), y'''') -> PLUS(s(s(x'''')), y'''')
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 4
↳Argument Filtering and Ordering
→DP Problem 2
↳Nar
PLUS(s(s(s(x''''))), y'''') -> PLUS(s(s(x'''')), y'''')
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
innermost
PLUS(s(s(s(x''''))), y'''') -> PLUS(s(s(x'''')), y'''')
PLUS(x1, x2) -> PLUS(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 5
↳Dependency Graph
→DP Problem 2
↳Nar
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Narrowing Transformation
QUOT(x, 0, s(z)) -> QUOT(x, plus(z, s(0)), s(z))
QUOT(s(x), s(y), z) -> QUOT(x, y, z)
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
innermost
two new Dependency Pairs are created:
QUOT(x, 0, s(z)) -> QUOT(x, plus(z, s(0)), s(z))
QUOT(x, 0, s(0)) -> QUOT(x, s(0), s(0))
QUOT(x, 0, s(s(x''))) -> QUOT(x, s(plus(x'', s(0))), s(s(x'')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Forward Instantiation Transformation
QUOT(x, 0, s(s(x''))) -> QUOT(x, s(plus(x'', s(0))), s(s(x'')))
QUOT(x, 0, s(0)) -> QUOT(x, s(0), s(0))
QUOT(s(x), s(y), z) -> QUOT(x, y, z)
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
innermost
three new Dependency Pairs are created:
QUOT(s(x), s(y), z) -> QUOT(x, y, z)
QUOT(s(s(x'')), s(s(y'')), z'') -> QUOT(s(x''), s(y''), z'')
QUOT(s(x''), s(0), s(0)) -> QUOT(x'', 0, s(0))
QUOT(s(x''), s(0), s(s(x''''))) -> QUOT(x'', 0, s(s(x'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳FwdInst
...
→DP Problem 7
↳Forward Instantiation Transformation
QUOT(x, 0, s(0)) -> QUOT(x, s(0), s(0))
QUOT(s(x''), s(0), s(0)) -> QUOT(x'', 0, s(0))
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
innermost
one new Dependency Pair is created:
QUOT(x, 0, s(0)) -> QUOT(x, s(0), s(0))
QUOT(s(x''''), 0, s(0)) -> QUOT(s(x''''), s(0), s(0))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳FwdInst
...
→DP Problem 9
↳Forward Instantiation Transformation
QUOT(s(x''''), 0, s(0)) -> QUOT(s(x''''), s(0), s(0))
QUOT(s(x''), s(0), s(0)) -> QUOT(x'', 0, s(0))
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
innermost
one new Dependency Pair is created:
QUOT(s(x''), s(0), s(0)) -> QUOT(x'', 0, s(0))
QUOT(s(s(x'''''')), s(0), s(0)) -> QUOT(s(x''''''), 0, s(0))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳FwdInst
...
→DP Problem 11
↳Argument Filtering and Ordering
QUOT(s(s(x'''''')), s(0), s(0)) -> QUOT(s(x''''''), 0, s(0))
QUOT(s(x''''), 0, s(0)) -> QUOT(s(x''''), s(0), s(0))
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
innermost
QUOT(s(s(x'''''')), s(0), s(0)) -> QUOT(s(x''''''), 0, s(0))
QUOT(x1, x2, x3) -> x1
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳FwdInst
...
→DP Problem 14
↳Dependency Graph
QUOT(s(x''''), 0, s(0)) -> QUOT(s(x''''), s(0), s(0))
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳FwdInst
...
→DP Problem 8
↳Narrowing Transformation
QUOT(s(x''), s(0), s(s(x''''))) -> QUOT(x'', 0, s(s(x'''')))
QUOT(s(s(x'')), s(s(y'')), z'') -> QUOT(s(x''), s(y''), z'')
QUOT(x, 0, s(s(x''))) -> QUOT(x, s(plus(x'', s(0))), s(s(x'')))
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
innermost
two new Dependency Pairs are created:
QUOT(x, 0, s(s(x''))) -> QUOT(x, s(plus(x'', s(0))), s(s(x'')))
QUOT(x, 0, s(s(0))) -> QUOT(x, s(s(0)), s(s(0)))
QUOT(x, 0, s(s(s(x''')))) -> QUOT(x, s(s(plus(x''', s(0)))), s(s(s(x'''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳FwdInst
...
→DP Problem 10
↳Forward Instantiation Transformation
QUOT(x, 0, s(s(s(x''')))) -> QUOT(x, s(s(plus(x''', s(0)))), s(s(s(x'''))))
QUOT(s(s(x'')), s(s(y'')), z'') -> QUOT(s(x''), s(y''), z'')
QUOT(x, 0, s(s(0))) -> QUOT(x, s(s(0)), s(s(0)))
QUOT(s(x''), s(0), s(s(x''''))) -> QUOT(x'', 0, s(s(x'''')))
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
innermost
two new Dependency Pairs are created:
QUOT(s(s(x'')), s(s(y'')), z'') -> QUOT(s(x''), s(y''), z'')
QUOT(s(s(s(x''''))), s(s(s(y''''))), z'''') -> QUOT(s(s(x'''')), s(s(y'''')), z'''')
QUOT(s(s(x'''')), s(s(0)), s(s(x''''''))) -> QUOT(s(x''''), s(0), s(s(x'''''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳FwdInst
...
→DP Problem 12
↳Forward Instantiation Transformation
QUOT(x, 0, s(s(0))) -> QUOT(x, s(s(0)), s(s(0)))
QUOT(s(x''), s(0), s(s(x''''))) -> QUOT(x'', 0, s(s(x'''')))
QUOT(s(s(x'''')), s(s(0)), s(s(x''''''))) -> QUOT(s(x''''), s(0), s(s(x'''''')))
QUOT(s(s(s(x''''))), s(s(s(y''''))), z'''') -> QUOT(s(s(x'''')), s(s(y'''')), z'''')
QUOT(x, 0, s(s(s(x''')))) -> QUOT(x, s(s(plus(x''', s(0)))), s(s(s(x'''))))
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
innermost
two new Dependency Pairs are created:
QUOT(s(x''), s(0), s(s(x''''))) -> QUOT(x'', 0, s(s(x'''')))
QUOT(s(x'''), s(0), s(s(0))) -> QUOT(x''', 0, s(s(0)))
QUOT(s(x'''), s(0), s(s(s(x'''''')))) -> QUOT(x''', 0, s(s(s(x''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳FwdInst
...
→DP Problem 13
↳Narrowing Transformation
QUOT(s(s(s(x''''))), s(s(s(y''''))), z'''') -> QUOT(s(s(x'''')), s(s(y'''')), z'''')
QUOT(x, 0, s(s(s(x''')))) -> QUOT(x, s(s(plus(x''', s(0)))), s(s(s(x'''))))
QUOT(s(x'''), s(0), s(s(s(x'''''')))) -> QUOT(x''', 0, s(s(s(x''''''))))
QUOT(s(x'''), s(0), s(s(0))) -> QUOT(x''', 0, s(s(0)))
QUOT(s(s(x'''')), s(s(0)), s(s(x''''''))) -> QUOT(s(x''''), s(0), s(s(x'''''')))
QUOT(x, 0, s(s(0))) -> QUOT(x, s(s(0)), s(s(0)))
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
innermost
two new Dependency Pairs are created:
QUOT(x, 0, s(s(s(x''')))) -> QUOT(x, s(s(plus(x''', s(0)))), s(s(s(x'''))))
QUOT(x, 0, s(s(s(0)))) -> QUOT(x, s(s(s(0))), s(s(s(0))))
QUOT(x, 0, s(s(s(s(x''))))) -> QUOT(x, s(s(s(plus(x'', s(0))))), s(s(s(s(x'')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳FwdInst
...
→DP Problem 15
↳Forward Instantiation Transformation
QUOT(x, 0, s(s(s(s(x''))))) -> QUOT(x, s(s(s(plus(x'', s(0))))), s(s(s(s(x'')))))
QUOT(x, 0, s(s(s(0)))) -> QUOT(x, s(s(s(0))), s(s(s(0))))
QUOT(s(x'''), s(0), s(s(s(x'''''')))) -> QUOT(x''', 0, s(s(s(x''''''))))
QUOT(x, 0, s(s(0))) -> QUOT(x, s(s(0)), s(s(0)))
QUOT(s(x'''), s(0), s(s(0))) -> QUOT(x''', 0, s(s(0)))
QUOT(s(s(x'''')), s(s(0)), s(s(x''''''))) -> QUOT(s(x''''), s(0), s(s(x'''''')))
QUOT(s(s(s(x''''))), s(s(s(y''''))), z'''') -> QUOT(s(s(x'''')), s(s(y'''')), z'''')
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
innermost
one new Dependency Pair is created:
QUOT(x, 0, s(s(0))) -> QUOT(x, s(s(0)), s(s(0)))
QUOT(s(s(x'''''')), 0, s(s(0))) -> QUOT(s(s(x'''''')), s(s(0)), s(s(0)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳FwdInst
...
→DP Problem 16
↳Forward Instantiation Transformation
QUOT(x, 0, s(s(s(0)))) -> QUOT(x, s(s(s(0))), s(s(s(0))))
QUOT(s(x'''), s(0), s(s(s(x'''''')))) -> QUOT(x''', 0, s(s(s(x''''''))))
QUOT(s(s(x'''''')), 0, s(s(0))) -> QUOT(s(s(x'''''')), s(s(0)), s(s(0)))
QUOT(s(x'''), s(0), s(s(0))) -> QUOT(x''', 0, s(s(0)))
QUOT(s(s(x'''')), s(s(0)), s(s(x''''''))) -> QUOT(s(x''''), s(0), s(s(x'''''')))
QUOT(s(s(s(x''''))), s(s(s(y''''))), z'''') -> QUOT(s(s(x'''')), s(s(y'''')), z'''')
QUOT(x, 0, s(s(s(s(x''))))) -> QUOT(x, s(s(s(plus(x'', s(0))))), s(s(s(s(x'')))))
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
innermost
two new Dependency Pairs are created:
QUOT(s(s(s(x''''))), s(s(s(y''''))), z'''') -> QUOT(s(s(x'''')), s(s(y'''')), z'''')
QUOT(s(s(s(s(x'''''')))), s(s(s(s(y'''''')))), z'''''') -> QUOT(s(s(s(x''''''))), s(s(s(y''''''))), z'''''')
QUOT(s(s(s(x''''''))), s(s(s(0))), s(s(x''''''''))) -> QUOT(s(s(x'''''')), s(s(0)), s(s(x'''''''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳FwdInst
...
→DP Problem 17
↳Narrowing Transformation
QUOT(s(s(s(s(x'''''')))), s(s(s(s(y'''''')))), z'''''') -> QUOT(s(s(s(x''''''))), s(s(s(y''''''))), z'''''')
QUOT(x, 0, s(s(s(s(x''))))) -> QUOT(x, s(s(s(plus(x'', s(0))))), s(s(s(s(x'')))))
QUOT(s(x'''), s(0), s(s(s(x'''''')))) -> QUOT(x''', 0, s(s(s(x''''''))))
QUOT(s(s(x'''''')), 0, s(s(0))) -> QUOT(s(s(x'''''')), s(s(0)), s(s(0)))
QUOT(s(x'''), s(0), s(s(0))) -> QUOT(x''', 0, s(s(0)))
QUOT(s(s(x'''')), s(s(0)), s(s(x''''''))) -> QUOT(s(x''''), s(0), s(s(x'''''')))
QUOT(s(s(s(x''''''))), s(s(s(0))), s(s(x''''''''))) -> QUOT(s(s(x'''''')), s(s(0)), s(s(x'''''''')))
QUOT(x, 0, s(s(s(0)))) -> QUOT(x, s(s(s(0))), s(s(s(0))))
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
innermost
two new Dependency Pairs are created:
QUOT(x, 0, s(s(s(s(x''))))) -> QUOT(x, s(s(s(plus(x'', s(0))))), s(s(s(s(x'')))))
QUOT(x, 0, s(s(s(s(0))))) -> QUOT(x, s(s(s(s(0)))), s(s(s(s(0)))))
QUOT(x, 0, s(s(s(s(s(x''')))))) -> QUOT(x, s(s(s(s(plus(x''', s(0)))))), s(s(s(s(s(x'''))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳FwdInst
...
→DP Problem 18
↳Forward Instantiation Transformation
QUOT(x, 0, s(s(s(s(s(x''')))))) -> QUOT(x, s(s(s(s(plus(x''', s(0)))))), s(s(s(s(s(x'''))))))
QUOT(x, 0, s(s(s(s(0))))) -> QUOT(x, s(s(s(s(0)))), s(s(s(s(0)))))
QUOT(x, 0, s(s(s(0)))) -> QUOT(x, s(s(s(0))), s(s(s(0))))
QUOT(s(x'''), s(0), s(s(s(x'''''')))) -> QUOT(x''', 0, s(s(s(x''''''))))
QUOT(s(s(x'''''')), 0, s(s(0))) -> QUOT(s(s(x'''''')), s(s(0)), s(s(0)))
QUOT(s(x'''), s(0), s(s(0))) -> QUOT(x''', 0, s(s(0)))
QUOT(s(s(x'''')), s(s(0)), s(s(x''''''))) -> QUOT(s(x''''), s(0), s(s(x'''''')))
QUOT(s(s(s(x''''''))), s(s(s(0))), s(s(x''''''''))) -> QUOT(s(s(x'''''')), s(s(0)), s(s(x'''''''')))
QUOT(s(s(s(s(x'''''')))), s(s(s(s(y'''''')))), z'''''') -> QUOT(s(s(s(x''''''))), s(s(s(y''''''))), z'''''')
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
innermost
two new Dependency Pairs are created:
QUOT(s(s(x'''')), s(s(0)), s(s(x''''''))) -> QUOT(s(x''''), s(0), s(s(x'''''')))
QUOT(s(s(x''''0)), s(s(0)), s(s(0))) -> QUOT(s(x''''0), s(0), s(s(0)))
QUOT(s(s(x''''0)), s(s(0)), s(s(s(x'''''''')))) -> QUOT(s(x''''0), s(0), s(s(s(x''''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳FwdInst
...
→DP Problem 19
↳Forward Instantiation Transformation
QUOT(s(s(x'''''')), 0, s(s(0))) -> QUOT(s(s(x'''''')), s(s(0)), s(s(0)))
QUOT(s(x'''), s(0), s(s(0))) -> QUOT(x''', 0, s(s(0)))
QUOT(s(s(x''''0)), s(s(0)), s(s(0))) -> QUOT(s(x''''0), s(0), s(s(0)))
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
innermost
one new Dependency Pair is created:
QUOT(s(x'''), s(0), s(s(0))) -> QUOT(x''', 0, s(s(0)))
QUOT(s(s(s(x''''''''))), s(0), s(s(0))) -> QUOT(s(s(x'''''''')), 0, s(s(0)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳FwdInst
...
→DP Problem 21
↳Forward Instantiation Transformation
QUOT(s(s(s(x''''''''))), s(0), s(s(0))) -> QUOT(s(s(x'''''''')), 0, s(s(0)))
QUOT(s(s(x''''0)), s(s(0)), s(s(0))) -> QUOT(s(x''''0), s(0), s(s(0)))
QUOT(s(s(x'''''')), 0, s(s(0))) -> QUOT(s(s(x'''''')), s(s(0)), s(s(0)))
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
innermost
one new Dependency Pair is created:
QUOT(s(s(x''''0)), s(s(0)), s(s(0))) -> QUOT(s(x''''0), s(0), s(s(0)))
QUOT(s(s(s(s(x'''''''''')))), s(s(0)), s(s(0))) -> QUOT(s(s(s(x''''''''''))), s(0), s(s(0)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳FwdInst
...
→DP Problem 23
↳Forward Instantiation Transformation
QUOT(s(s(s(s(x'''''''''')))), s(s(0)), s(s(0))) -> QUOT(s(s(s(x''''''''''))), s(0), s(s(0)))
QUOT(s(s(x'''''')), 0, s(s(0))) -> QUOT(s(s(x'''''')), s(s(0)), s(s(0)))
QUOT(s(s(s(x''''''''))), s(0), s(s(0))) -> QUOT(s(s(x'''''''')), 0, s(s(0)))
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
innermost
one new Dependency Pair is created:
QUOT(s(s(x'''''')), 0, s(s(0))) -> QUOT(s(s(x'''''')), s(s(0)), s(s(0)))
QUOT(s(s(s(s(x'''''''''''')))), 0, s(s(0))) -> QUOT(s(s(s(s(x'''''''''''')))), s(s(0)), s(s(0)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳FwdInst
...
→DP Problem 25
↳Forward Instantiation Transformation
QUOT(s(s(s(s(x'''''''''''')))), 0, s(s(0))) -> QUOT(s(s(s(s(x'''''''''''')))), s(s(0)), s(s(0)))
QUOT(s(s(s(x''''''''))), s(0), s(s(0))) -> QUOT(s(s(x'''''''')), 0, s(s(0)))
QUOT(s(s(s(s(x'''''''''')))), s(s(0)), s(s(0))) -> QUOT(s(s(s(x''''''''''))), s(0), s(s(0)))
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
innermost
one new Dependency Pair is created:
QUOT(s(s(s(x''''''''))), s(0), s(s(0))) -> QUOT(s(s(x'''''''')), 0, s(s(0)))
QUOT(s(s(s(s(s(x''''''''''''''))))), s(0), s(s(0))) -> QUOT(s(s(s(s(x'''''''''''''')))), 0, s(s(0)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳FwdInst
...
→DP Problem 27
↳Forward Instantiation Transformation
QUOT(s(s(s(s(s(x''''''''''''''))))), s(0), s(s(0))) -> QUOT(s(s(s(s(x'''''''''''''')))), 0, s(s(0)))
QUOT(s(s(s(s(x'''''''''')))), s(s(0)), s(s(0))) -> QUOT(s(s(s(x''''''''''))), s(0), s(s(0)))
QUOT(s(s(s(s(x'''''''''''')))), 0, s(s(0))) -> QUOT(s(s(s(s(x'''''''''''')))), s(s(0)), s(s(0)))
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
innermost
one new Dependency Pair is created:
QUOT(s(s(s(s(x'''''''''')))), s(s(0)), s(s(0))) -> QUOT(s(s(s(x''''''''''))), s(0), s(s(0)))
QUOT(s(s(s(s(s(s(x'''''''''''''''')))))), s(s(0)), s(s(0))) -> QUOT(s(s(s(s(s(x''''''''''''''''))))), s(0), s(s(0)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳FwdInst
...
→DP Problem 29
↳Forward Instantiation Transformation
QUOT(s(s(s(s(s(s(x'''''''''''''''')))))), s(s(0)), s(s(0))) -> QUOT(s(s(s(s(s(x''''''''''''''''))))), s(0), s(s(0)))
QUOT(s(s(s(s(x'''''''''''')))), 0, s(s(0))) -> QUOT(s(s(s(s(x'''''''''''')))), s(s(0)), s(s(0)))
QUOT(s(s(s(s(s(x''''''''''''''))))), s(0), s(s(0))) -> QUOT(s(s(s(s(x'''''''''''''')))), 0, s(s(0)))
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
innermost
one new Dependency Pair is created:
QUOT(s(s(s(s(x'''''''''''')))), 0, s(s(0))) -> QUOT(s(s(s(s(x'''''''''''')))), s(s(0)), s(s(0)))
QUOT(s(s(s(s(s(s(x'''''''''''''''''')))))), 0, s(s(0))) -> QUOT(s(s(s(s(s(s(x'''''''''''''''''')))))), s(s(0)), s(s(0)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳FwdInst
...
→DP Problem 31
↳Forward Instantiation Transformation
QUOT(s(s(s(s(s(s(x'''''''''''''''''')))))), 0, s(s(0))) -> QUOT(s(s(s(s(s(s(x'''''''''''''''''')))))), s(s(0)), s(s(0)))
QUOT(s(s(s(s(s(x''''''''''''''))))), s(0), s(s(0))) -> QUOT(s(s(s(s(x'''''''''''''')))), 0, s(s(0)))
QUOT(s(s(s(s(s(s(x'''''''''''''''')))))), s(s(0)), s(s(0))) -> QUOT(s(s(s(s(s(x''''''''''''''''))))), s(0), s(s(0)))
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
innermost
one new Dependency Pair is created:
QUOT(s(s(s(s(s(x''''''''''''''))))), s(0), s(s(0))) -> QUOT(s(s(s(s(x'''''''''''''')))), 0, s(s(0)))
QUOT(s(s(s(s(s(s(s(x''''''''''''''''''''))))))), s(0), s(s(0))) -> QUOT(s(s(s(s(s(s(x'''''''''''''''''''')))))), 0, s(s(0)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳FwdInst
...
→DP Problem 33
↳Argument Filtering and Ordering
QUOT(s(s(s(s(s(s(s(x''''''''''''''''''''))))))), s(0), s(s(0))) -> QUOT(s(s(s(s(s(s(x'''''''''''''''''''')))))), 0, s(s(0)))
QUOT(s(s(s(s(s(s(x'''''''''''''''')))))), s(s(0)), s(s(0))) -> QUOT(s(s(s(s(s(x''''''''''''''''))))), s(0), s(s(0)))
QUOT(s(s(s(s(s(s(x'''''''''''''''''')))))), 0, s(s(0))) -> QUOT(s(s(s(s(s(s(x'''''''''''''''''')))))), s(s(0)), s(s(0)))
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
innermost
QUOT(s(s(s(s(s(s(s(x''''''''''''''''''''))))))), s(0), s(s(0))) -> QUOT(s(s(s(s(s(s(x'''''''''''''''''''')))))), 0, s(s(0)))
QUOT(s(s(s(s(s(s(x'''''''''''''''')))))), s(s(0)), s(s(0))) -> QUOT(s(s(s(s(s(x''''''''''''''''))))), s(0), s(s(0)))
QUOT(x1, x2, x3) -> x1
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳FwdInst
...
→DP Problem 45
↳Dependency Graph
QUOT(s(s(s(s(s(s(x'''''''''''''''''')))))), 0, s(s(0))) -> QUOT(s(s(s(s(s(s(x'''''''''''''''''')))))), s(s(0)), s(s(0)))
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳FwdInst
...
→DP Problem 20
↳Forward Instantiation Transformation
QUOT(x, 0, s(s(s(s(0))))) -> QUOT(x, s(s(s(s(0)))), s(s(s(s(0)))))
QUOT(x, 0, s(s(s(0)))) -> QUOT(x, s(s(s(0))), s(s(s(0))))
QUOT(s(x'''), s(0), s(s(s(x'''''')))) -> QUOT(x''', 0, s(s(s(x''''''))))
QUOT(s(s(x''''0)), s(s(0)), s(s(s(x'''''''')))) -> QUOT(s(x''''0), s(0), s(s(s(x''''''''))))
QUOT(s(s(s(x''''''))), s(s(s(0))), s(s(x''''''''))) -> QUOT(s(s(x'''''')), s(s(0)), s(s(x'''''''')))
QUOT(s(s(s(s(x'''''')))), s(s(s(s(y'''''')))), z'''''') -> QUOT(s(s(s(x''''''))), s(s(s(y''''''))), z'''''')
QUOT(x, 0, s(s(s(s(s(x''')))))) -> QUOT(x, s(s(s(s(plus(x''', s(0)))))), s(s(s(s(s(x'''))))))
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
innermost
three new Dependency Pairs are created:
QUOT(s(x'''), s(0), s(s(s(x'''''')))) -> QUOT(x''', 0, s(s(s(x''''''))))
QUOT(s(x''''), s(0), s(s(s(0)))) -> QUOT(x'''', 0, s(s(s(0))))
QUOT(s(x''''), s(0), s(s(s(s(0))))) -> QUOT(x'''', 0, s(s(s(s(0)))))
QUOT(s(x'''0), s(0), s(s(s(s(s(x''''')))))) -> QUOT(x'''0, 0, s(s(s(s(s(x'''''))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳FwdInst
...
→DP Problem 22
↳Forward Instantiation Transformation
QUOT(x, 0, s(s(s(s(s(x''')))))) -> QUOT(x, s(s(s(s(plus(x''', s(0)))))), s(s(s(s(s(x'''))))))
QUOT(s(x'''0), s(0), s(s(s(s(s(x''''')))))) -> QUOT(x'''0, 0, s(s(s(s(s(x'''''))))))
QUOT(s(x''''), s(0), s(s(s(s(0))))) -> QUOT(x'''', 0, s(s(s(s(0)))))
QUOT(x, 0, s(s(s(0)))) -> QUOT(x, s(s(s(0))), s(s(s(0))))
QUOT(s(x''''), s(0), s(s(s(0)))) -> QUOT(x'''', 0, s(s(s(0))))
QUOT(s(s(x''''0)), s(s(0)), s(s(s(x'''''''')))) -> QUOT(s(x''''0), s(0), s(s(s(x''''''''))))
QUOT(s(s(s(x''''''))), s(s(s(0))), s(s(x''''''''))) -> QUOT(s(s(x'''''')), s(s(0)), s(s(x'''''''')))
QUOT(s(s(s(s(x'''''')))), s(s(s(s(y'''''')))), z'''''') -> QUOT(s(s(s(x''''''))), s(s(s(y''''''))), z'''''')
QUOT(x, 0, s(s(s(s(0))))) -> QUOT(x, s(s(s(s(0)))), s(s(s(s(0)))))
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
innermost
one new Dependency Pair is created:
QUOT(x, 0, s(s(s(0)))) -> QUOT(x, s(s(s(0))), s(s(s(0))))
QUOT(s(s(s(x''''''''))), 0, s(s(s(0)))) -> QUOT(s(s(s(x''''''''))), s(s(s(0))), s(s(s(0))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳FwdInst
...
→DP Problem 24
↳Forward Instantiation Transformation
QUOT(s(x'''0), s(0), s(s(s(s(s(x''''')))))) -> QUOT(x'''0, 0, s(s(s(s(s(x'''''))))))
QUOT(x, 0, s(s(s(s(0))))) -> QUOT(x, s(s(s(s(0)))), s(s(s(s(0)))))
QUOT(s(x''''), s(0), s(s(s(s(0))))) -> QUOT(x'''', 0, s(s(s(s(0)))))
QUOT(s(s(s(x''''''''))), 0, s(s(s(0)))) -> QUOT(s(s(s(x''''''''))), s(s(s(0))), s(s(s(0))))
QUOT(s(x''''), s(0), s(s(s(0)))) -> QUOT(x'''', 0, s(s(s(0))))
QUOT(s(s(x''''0)), s(s(0)), s(s(s(x'''''''')))) -> QUOT(s(x''''0), s(0), s(s(s(x''''''''))))
QUOT(s(s(s(x''''''))), s(s(s(0))), s(s(x''''''''))) -> QUOT(s(s(x'''''')), s(s(0)), s(s(x'''''''')))
QUOT(s(s(s(s(x'''''')))), s(s(s(s(y'''''')))), z'''''') -> QUOT(s(s(s(x''''''))), s(s(s(y''''''))), z'''''')
QUOT(x, 0, s(s(s(s(s(x''')))))) -> QUOT(x, s(s(s(s(plus(x''', s(0)))))), s(s(s(s(s(x'''))))))
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
innermost
two new Dependency Pairs are created:
QUOT(s(s(s(s(x'''''')))), s(s(s(s(y'''''')))), z'''''') -> QUOT(s(s(s(x''''''))), s(s(s(y''''''))), z'''''')
QUOT(s(s(s(s(s(x''''''''))))), s(s(s(s(s(y''''''''))))), z'''''''') -> QUOT(s(s(s(s(x'''''''')))), s(s(s(s(y'''''''')))), z'''''''')
QUOT(s(s(s(s(x'''''''')))), s(s(s(s(0)))), s(s(x''''''''''))) -> QUOT(s(s(s(x''''''''))), s(s(s(0))), s(s(x'''''''''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳FwdInst
...
→DP Problem 26
↳Narrowing Transformation
QUOT(x, 0, s(s(s(s(0))))) -> QUOT(x, s(s(s(s(0)))), s(s(s(s(0)))))
QUOT(s(x''''), s(0), s(s(s(s(0))))) -> QUOT(x'''', 0, s(s(s(s(0)))))
QUOT(s(s(s(x''''''''))), 0, s(s(s(0)))) -> QUOT(s(s(s(x''''''''))), s(s(s(0))), s(s(s(0))))
QUOT(s(x''''), s(0), s(s(s(0)))) -> QUOT(x'''', 0, s(s(s(0))))
QUOT(s(s(x''''0)), s(s(0)), s(s(s(x'''''''')))) -> QUOT(s(x''''0), s(0), s(s(s(x''''''''))))
QUOT(s(s(s(x''''''))), s(s(s(0))), s(s(x''''''''))) -> QUOT(s(s(x'''''')), s(s(0)), s(s(x'''''''')))
QUOT(s(s(s(s(x'''''''')))), s(s(s(s(0)))), s(s(x''''''''''))) -> QUOT(s(s(s(x''''''''))), s(s(s(0))), s(s(x'''''''''')))
QUOT(s(s(s(s(s(x''''''''))))), s(s(s(s(s(y''''''''))))), z'''''''') -> QUOT(s(s(s(s(x'''''''')))), s(s(s(s(y'''''''')))), z'''''''')
QUOT(x, 0, s(s(s(s(s(x''')))))) -> QUOT(x, s(s(s(s(plus(x''', s(0)))))), s(s(s(s(s(x'''))))))
QUOT(s(x'''0), s(0), s(s(s(s(s(x''''')))))) -> QUOT(x'''0, 0, s(s(s(s(s(x'''''))))))
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
innermost
two new Dependency Pairs are created:
QUOT(x, 0, s(s(s(s(s(x''')))))) -> QUOT(x, s(s(s(s(plus(x''', s(0)))))), s(s(s(s(s(x'''))))))
QUOT(x, 0, s(s(s(s(s(0)))))) -> QUOT(x, s(s(s(s(s(0))))), s(s(s(s(s(0))))))
QUOT(x, 0, s(s(s(s(s(s(x''))))))) -> QUOT(x, s(s(s(s(s(plus(x'', s(0))))))), s(s(s(s(s(s(x'')))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳FwdInst
...
→DP Problem 28
↳Forward Instantiation Transformation
QUOT(x, 0, s(s(s(s(s(s(x''))))))) -> QUOT(x, s(s(s(s(s(plus(x'', s(0))))))), s(s(s(s(s(s(x'')))))))
QUOT(s(s(s(s(s(x''''''''))))), s(s(s(s(s(y''''''''))))), z'''''''') -> QUOT(s(s(s(s(x'''''''')))), s(s(s(s(y'''''''')))), z'''''''')
QUOT(x, 0, s(s(s(s(s(0)))))) -> QUOT(x, s(s(s(s(s(0))))), s(s(s(s(s(0))))))
QUOT(s(x'''0), s(0), s(s(s(s(s(x''''')))))) -> QUOT(x'''0, 0, s(s(s(s(s(x'''''))))))
QUOT(s(x''''), s(0), s(s(s(s(0))))) -> QUOT(x'''', 0, s(s(s(s(0)))))
QUOT(s(s(s(x''''''''))), 0, s(s(s(0)))) -> QUOT(s(s(s(x''''''''))), s(s(s(0))), s(s(s(0))))
QUOT(s(x''''), s(0), s(s(s(0)))) -> QUOT(x'''', 0, s(s(s(0))))
QUOT(s(s(x''''0)), s(s(0)), s(s(s(x'''''''')))) -> QUOT(s(x''''0), s(0), s(s(s(x''''''''))))
QUOT(s(s(s(x''''''))), s(s(s(0))), s(s(x''''''''))) -> QUOT(s(s(x'''''')), s(s(0)), s(s(x'''''''')))
QUOT(s(s(s(s(x'''''''')))), s(s(s(s(0)))), s(s(x''''''''''))) -> QUOT(s(s(s(x''''''''))), s(s(s(0))), s(s(x'''''''''')))
QUOT(x, 0, s(s(s(s(0))))) -> QUOT(x, s(s(s(s(0)))), s(s(s(s(0)))))
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
innermost
one new Dependency Pair is created:
QUOT(s(s(s(x''''''))), s(s(s(0))), s(s(x''''''''))) -> QUOT(s(s(x'''''')), s(s(0)), s(s(x'''''''')))
QUOT(s(s(s(x'''''''))), s(s(s(0))), s(s(s(x'''''''''')))) -> QUOT(s(s(x''''''')), s(s(0)), s(s(s(x''''''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳FwdInst
...
→DP Problem 30
↳Forward Instantiation Transformation
QUOT(x, 0, s(s(s(s(s(0)))))) -> QUOT(x, s(s(s(s(s(0))))), s(s(s(s(s(0))))))
QUOT(s(x'''0), s(0), s(s(s(s(s(x''''')))))) -> QUOT(x'''0, 0, s(s(s(s(s(x'''''))))))
QUOT(x, 0, s(s(s(s(0))))) -> QUOT(x, s(s(s(s(0)))), s(s(s(s(0)))))
QUOT(s(x''''), s(0), s(s(s(s(0))))) -> QUOT(x'''', 0, s(s(s(s(0)))))
QUOT(s(s(s(x''''''''))), 0, s(s(s(0)))) -> QUOT(s(s(s(x''''''''))), s(s(s(0))), s(s(s(0))))
QUOT(s(x''''), s(0), s(s(s(0)))) -> QUOT(x'''', 0, s(s(s(0))))
QUOT(s(s(x''''0)), s(s(0)), s(s(s(x'''''''')))) -> QUOT(s(x''''0), s(0), s(s(s(x''''''''))))
QUOT(s(s(s(x'''''''))), s(s(s(0))), s(s(s(x'''''''''')))) -> QUOT(s(s(x''''''')), s(s(0)), s(s(s(x''''''''''))))
QUOT(s(s(s(s(x'''''''')))), s(s(s(s(0)))), s(s(x''''''''''))) -> QUOT(s(s(s(x''''''''))), s(s(s(0))), s(s(x'''''''''')))
QUOT(s(s(s(s(s(x''''''''))))), s(s(s(s(s(y''''''''))))), z'''''''') -> QUOT(s(s(s(s(x'''''''')))), s(s(s(s(y'''''''')))), z'''''''')
QUOT(x, 0, s(s(s(s(s(s(x''))))))) -> QUOT(x, s(s(s(s(s(plus(x'', s(0))))))), s(s(s(s(s(s(x'')))))))
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
innermost
one new Dependency Pair is created:
QUOT(x, 0, s(s(s(s(0))))) -> QUOT(x, s(s(s(s(0)))), s(s(s(s(0)))))
QUOT(s(s(s(s(x'''''''''')))), 0, s(s(s(s(0))))) -> QUOT(s(s(s(s(x'''''''''')))), s(s(s(s(0)))), s(s(s(s(0)))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳FwdInst
...
→DP Problem 32
↳Forward Instantiation Transformation
QUOT(x, 0, s(s(s(s(s(s(x''))))))) -> QUOT(x, s(s(s(s(s(plus(x'', s(0))))))), s(s(s(s(s(s(x'')))))))
QUOT(s(x'''0), s(0), s(s(s(s(s(x''''')))))) -> QUOT(x'''0, 0, s(s(s(s(s(x'''''))))))
QUOT(s(s(s(s(x'''''''''')))), 0, s(s(s(s(0))))) -> QUOT(s(s(s(s(x'''''''''')))), s(s(s(s(0)))), s(s(s(s(0)))))
QUOT(s(x''''), s(0), s(s(s(s(0))))) -> QUOT(x'''', 0, s(s(s(s(0)))))
QUOT(s(s(s(x''''''''))), 0, s(s(s(0)))) -> QUOT(s(s(s(x''''''''))), s(s(s(0))), s(s(s(0))))
QUOT(s(x''''), s(0), s(s(s(0)))) -> QUOT(x'''', 0, s(s(s(0))))
QUOT(s(s(x''''0)), s(s(0)), s(s(s(x'''''''')))) -> QUOT(s(x''''0), s(0), s(s(s(x''''''''))))
QUOT(s(s(s(x'''''''))), s(s(s(0))), s(s(s(x'''''''''')))) -> QUOT(s(s(x''''''')), s(s(0)), s(s(s(x''''''''''))))
QUOT(s(s(s(s(x'''''''')))), s(s(s(s(0)))), s(s(x''''''''''))) -> QUOT(s(s(s(x''''''''))), s(s(s(0))), s(s(x'''''''''')))
QUOT(s(s(s(s(s(x''''''''))))), s(s(s(s(s(y''''''''))))), z'''''''') -> QUOT(s(s(s(s(x'''''''')))), s(s(s(s(y'''''''')))), z'''''''')
QUOT(x, 0, s(s(s(s(s(0)))))) -> QUOT(x, s(s(s(s(s(0))))), s(s(s(s(s(0))))))
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
innermost
three new Dependency Pairs are created:
QUOT(s(s(x''''0)), s(s(0)), s(s(s(x'''''''')))) -> QUOT(s(x''''0), s(0), s(s(s(x''''''''))))
QUOT(s(s(x''''0')), s(s(0)), s(s(s(0)))) -> QUOT(s(x''''0'), s(0), s(s(s(0))))
QUOT(s(s(x''''0')), s(s(0)), s(s(s(s(0))))) -> QUOT(s(x''''0'), s(0), s(s(s(s(0)))))
QUOT(s(s(x''''0')), s(s(0)), s(s(s(s(s(x''''''')))))) -> QUOT(s(x''''0'), s(0), s(s(s(s(s(x'''''''))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳FwdInst
...
→DP Problem 34
↳Forward Instantiation Transformation
QUOT(x, 0, s(s(s(s(s(0)))))) -> QUOT(x, s(s(s(s(s(0))))), s(s(s(s(s(0))))))
QUOT(s(x'''0), s(0), s(s(s(s(s(x''''')))))) -> QUOT(x'''0, 0, s(s(s(s(s(x'''''))))))
QUOT(s(s(x''''0')), s(s(0)), s(s(s(s(s(x''''''')))))) -> QUOT(s(x''''0'), s(0), s(s(s(s(s(x'''''''))))))
QUOT(s(s(s(s(x'''''''''')))), 0, s(s(s(s(0))))) -> QUOT(s(s(s(s(x'''''''''')))), s(s(s(s(0)))), s(s(s(s(0)))))
QUOT(s(x''''), s(0), s(s(s(s(0))))) -> QUOT(x'''', 0, s(s(s(s(0)))))
QUOT(s(s(x''''0')), s(s(0)), s(s(s(s(0))))) -> QUOT(s(x''''0'), s(0), s(s(s(s(0)))))
QUOT(s(s(s(x''''''''))), 0, s(s(s(0)))) -> QUOT(s(s(s(x''''''''))), s(s(s(0))), s(s(s(0))))
QUOT(s(x''''), s(0), s(s(s(0)))) -> QUOT(x'''', 0, s(s(s(0))))
QUOT(s(s(x''''0')), s(s(0)), s(s(s(0)))) -> QUOT(s(x''''0'), s(0), s(s(s(0))))
QUOT(s(s(s(x'''''''))), s(s(s(0))), s(s(s(x'''''''''')))) -> QUOT(s(s(x''''''')), s(s(0)), s(s(s(x''''''''''))))
QUOT(s(s(s(s(x'''''''')))), s(s(s(s(0)))), s(s(x''''''''''))) -> QUOT(s(s(s(x''''''''))), s(s(s(0))), s(s(x'''''''''')))
QUOT(s(s(s(s(s(x''''''''))))), s(s(s(s(s(y''''''''))))), z'''''''') -> QUOT(s(s(s(s(x'''''''')))), s(s(s(s(y'''''''')))), z'''''''')
QUOT(x, 0, s(s(s(s(s(s(x''))))))) -> QUOT(x, s(s(s(s(s(plus(x'', s(0))))))), s(s(s(s(s(s(x'')))))))
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
innermost
one new Dependency Pair is created:
QUOT(s(x''''), s(0), s(s(s(0)))) -> QUOT(x'''', 0, s(s(s(0))))
QUOT(s(s(s(s(x'''''''''')))), s(0), s(s(s(0)))) -> QUOT(s(s(s(x''''''''''))), 0, s(s(s(0))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳FwdInst
...
→DP Problem 35
↳Forward Instantiation Transformation
QUOT(x, 0, s(s(s(s(s(s(x''))))))) -> QUOT(x, s(s(s(s(s(plus(x'', s(0))))))), s(s(s(s(s(s(x'')))))))
QUOT(s(x'''0), s(0), s(s(s(s(s(x''''')))))) -> QUOT(x'''0, 0, s(s(s(s(s(x'''''))))))
QUOT(s(s(x''''0')), s(s(0)), s(s(s(s(s(x''''''')))))) -> QUOT(s(x''''0'), s(0), s(s(s(s(s(x'''''''))))))
QUOT(s(s(s(s(x'''''''''')))), 0, s(s(s(s(0))))) -> QUOT(s(s(s(s(x'''''''''')))), s(s(s(s(0)))), s(s(s(s(0)))))
QUOT(s(x''''), s(0), s(s(s(s(0))))) -> QUOT(x'''', 0, s(s(s(s(0)))))
QUOT(s(s(x''''0')), s(s(0)), s(s(s(s(0))))) -> QUOT(s(x''''0'), s(0), s(s(s(s(0)))))
QUOT(s(s(s(x''''''''))), 0, s(s(s(0)))) -> QUOT(s(s(s(x''''''''))), s(s(s(0))), s(s(s(0))))
QUOT(s(s(s(s(x'''''''''')))), s(0), s(s(s(0)))) -> QUOT(s(s(s(x''''''''''))), 0, s(s(s(0))))
QUOT(s(s(x''''0')), s(s(0)), s(s(s(0)))) -> QUOT(s(x''''0'), s(0), s(s(s(0))))
QUOT(s(s(s(x'''''''))), s(s(s(0))), s(s(s(x'''''''''')))) -> QUOT(s(s(x''''''')), s(s(0)), s(s(s(x''''''''''))))
QUOT(s(s(s(s(x'''''''')))), s(s(s(s(0)))), s(s(x''''''''''))) -> QUOT(s(s(s(x''''''''))), s(s(s(0))), s(s(x'''''''''')))
QUOT(s(s(s(s(s(x''''''''))))), s(s(s(s(s(y''''''''))))), z'''''''') -> QUOT(s(s(s(s(x'''''''')))), s(s(s(s(y'''''''')))), z'''''''')
QUOT(x, 0, s(s(s(s(s(0)))))) -> QUOT(x, s(s(s(s(s(0))))), s(s(s(s(s(0))))))
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
innermost
one new Dependency Pair is created:
QUOT(s(x''''), s(0), s(s(s(s(0))))) -> QUOT(x'''', 0, s(s(s(s(0)))))
QUOT(s(s(s(s(s(x''''''''''''))))), s(0), s(s(s(s(0))))) -> QUOT(s(s(s(s(x'''''''''''')))), 0, s(s(s(s(0)))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳FwdInst
...
→DP Problem 36
↳Forward Instantiation Transformation
QUOT(x, 0, s(s(s(s(s(0)))))) -> QUOT(x, s(s(s(s(s(0))))), s(s(s(s(s(0))))))
QUOT(s(x'''0), s(0), s(s(s(s(s(x''''')))))) -> QUOT(x'''0, 0, s(s(s(s(s(x'''''))))))
QUOT(s(s(x''''0')), s(s(0)), s(s(s(s(s(x''''''')))))) -> QUOT(s(x''''0'), s(0), s(s(s(s(s(x'''''''))))))
QUOT(s(s(s(s(x'''''''''')))), 0, s(s(s(s(0))))) -> QUOT(s(s(s(s(x'''''''''')))), s(s(s(s(0)))), s(s(s(s(0)))))
QUOT(s(s(s(s(s(x''''''''''''))))), s(0), s(s(s(s(0))))) -> QUOT(s(s(s(s(x'''''''''''')))), 0, s(s(s(s(0)))))
QUOT(s(s(x''''0')), s(s(0)), s(s(s(s(0))))) -> QUOT(s(x''''0'), s(0), s(s(s(s(0)))))
QUOT(s(s(s(x''''''''))), 0, s(s(s(0)))) -> QUOT(s(s(s(x''''''''))), s(s(s(0))), s(s(s(0))))
QUOT(s(s(s(s(x'''''''''')))), s(0), s(s(s(0)))) -> QUOT(s(s(s(x''''''''''))), 0, s(s(s(0))))
QUOT(s(s(x''''0')), s(s(0)), s(s(s(0)))) -> QUOT(s(x''''0'), s(0), s(s(s(0))))
QUOT(s(s(s(x'''''''))), s(s(s(0))), s(s(s(x'''''''''')))) -> QUOT(s(s(x''''''')), s(s(0)), s(s(s(x''''''''''))))
QUOT(s(s(s(s(x'''''''')))), s(s(s(s(0)))), s(s(x''''''''''))) -> QUOT(s(s(s(x''''''''))), s(s(s(0))), s(s(x'''''''''')))
QUOT(s(s(s(s(s(x''''''''))))), s(s(s(s(s(y''''''''))))), z'''''''') -> QUOT(s(s(s(s(x'''''''')))), s(s(s(s(y'''''''')))), z'''''''')
QUOT(x, 0, s(s(s(s(s(s(x''))))))) -> QUOT(x, s(s(s(s(s(plus(x'', s(0))))))), s(s(s(s(s(s(x'')))))))
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
innermost
two new Dependency Pairs are created:
QUOT(s(x'''0), s(0), s(s(s(s(s(x''''')))))) -> QUOT(x'''0, 0, s(s(s(s(s(x'''''))))))
QUOT(s(x'''0'), s(0), s(s(s(s(s(0)))))) -> QUOT(x'''0', 0, s(s(s(s(s(0))))))
QUOT(s(x'''0'), s(0), s(s(s(s(s(s(x''''))))))) -> QUOT(x'''0', 0, s(s(s(s(s(s(x'''')))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳FwdInst
...
→DP Problem 37
↳Forward Instantiation Transformation
QUOT(x, 0, s(s(s(s(s(s(x''))))))) -> QUOT(x, s(s(s(s(s(plus(x'', s(0))))))), s(s(s(s(s(s(x'')))))))
QUOT(s(x'''0'), s(0), s(s(s(s(s(s(x''''))))))) -> QUOT(x'''0', 0, s(s(s(s(s(s(x'''')))))))
QUOT(s(x'''0'), s(0), s(s(s(s(s(0)))))) -> QUOT(x'''0', 0, s(s(s(s(s(0))))))
QUOT(s(s(x''''0')), s(s(0)), s(s(s(s(s(x''''''')))))) -> QUOT(s(x''''0'), s(0), s(s(s(s(s(x'''''''))))))
QUOT(s(s(s(s(x'''''''''')))), 0, s(s(s(s(0))))) -> QUOT(s(s(s(s(x'''''''''')))), s(s(s(s(0)))), s(s(s(s(0)))))
QUOT(s(s(s(s(s(x''''''''''''))))), s(0), s(s(s(s(0))))) -> QUOT(s(s(s(s(x'''''''''''')))), 0, s(s(s(s(0)))))
QUOT(s(s(x''''0')), s(s(0)), s(s(s(s(0))))) -> QUOT(s(x''''0'), s(0), s(s(s(s(0)))))
QUOT(s(s(s(x''''''''))), 0, s(s(s(0)))) -> QUOT(s(s(s(x''''''''))), s(s(s(0))), s(s(s(0))))
QUOT(s(s(s(s(x'''''''''')))), s(0), s(s(s(0)))) -> QUOT(s(s(s(x''''''''''))), 0, s(s(s(0))))
QUOT(s(s(x''''0')), s(s(0)), s(s(s(0)))) -> QUOT(s(x''''0'), s(0), s(s(s(0))))
QUOT(s(s(s(x'''''''))), s(s(s(0))), s(s(s(x'''''''''')))) -> QUOT(s(s(x''''''')), s(s(0)), s(s(s(x''''''''''))))
QUOT(s(s(s(s(x'''''''')))), s(s(s(s(0)))), s(s(x''''''''''))) -> QUOT(s(s(s(x''''''''))), s(s(s(0))), s(s(x'''''''''')))
QUOT(s(s(s(s(s(x''''''''))))), s(s(s(s(s(y''''''''))))), z'''''''') -> QUOT(s(s(s(s(x'''''''')))), s(s(s(s(y'''''''')))), z'''''''')
QUOT(x, 0, s(s(s(s(s(0)))))) -> QUOT(x, s(s(s(s(s(0))))), s(s(s(s(s(0))))))
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
innermost
two new Dependency Pairs are created:
QUOT(s(s(s(s(s(x''''''''))))), s(s(s(s(s(y''''''''))))), z'''''''') -> QUOT(s(s(s(s(x'''''''')))), s(s(s(s(y'''''''')))), z'''''''')
QUOT(s(s(s(s(s(s(x'''''''''')))))), s(s(s(s(s(s(y'''''''''')))))), z'''''''''') -> QUOT(s(s(s(s(s(x''''''''''))))), s(s(s(s(s(y''''''''''))))), z'''''''''')
QUOT(s(s(s(s(s(x''''''''''))))), s(s(s(s(s(0))))), s(s(x''''''''''''))) -> QUOT(s(s(s(s(x'''''''''')))), s(s(s(s(0)))), s(s(x'''''''''''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳FwdInst
...
→DP Problem 38
↳Forward Instantiation Transformation
QUOT(s(x'''0'), s(0), s(s(s(s(s(s(x''''))))))) -> QUOT(x'''0', 0, s(s(s(s(s(s(x'''')))))))
QUOT(x, 0, s(s(s(s(s(0)))))) -> QUOT(x, s(s(s(s(s(0))))), s(s(s(s(s(0))))))
QUOT(s(x'''0'), s(0), s(s(s(s(s(0)))))) -> QUOT(x'''0', 0, s(s(s(s(s(0))))))
QUOT(s(s(x''''0')), s(s(0)), s(s(s(s(s(x''''''')))))) -> QUOT(s(x''''0'), s(0), s(s(s(s(s(x'''''''))))))
QUOT(s(s(s(s(x'''''''''')))), 0, s(s(s(s(0))))) -> QUOT(s(s(s(s(x'''''''''')))), s(s(s(s(0)))), s(s(s(s(0)))))
QUOT(s(s(s(s(s(x''''''''''''))))), s(0), s(s(s(s(0))))) -> QUOT(s(s(s(s(x'''''''''''')))), 0, s(s(s(s(0)))))
QUOT(s(s(x''''0')), s(s(0)), s(s(s(s(0))))) -> QUOT(s(x''''0'), s(0), s(s(s(s(0)))))
QUOT(s(s(s(x''''''''))), 0, s(s(s(0)))) -> QUOT(s(s(s(x''''''''))), s(s(s(0))), s(s(s(0))))
QUOT(s(s(s(s(x'''''''''')))), s(0), s(s(s(0)))) -> QUOT(s(s(s(x''''''''''))), 0, s(s(s(0))))
QUOT(s(s(x''''0')), s(s(0)), s(s(s(0)))) -> QUOT(s(x''''0'), s(0), s(s(s(0))))
QUOT(s(s(s(x'''''''))), s(s(s(0))), s(s(s(x'''''''''')))) -> QUOT(s(s(x''''''')), s(s(0)), s(s(s(x''''''''''))))
QUOT(s(s(s(s(x'''''''')))), s(s(s(s(0)))), s(s(x''''''''''))) -> QUOT(s(s(s(x''''''''))), s(s(s(0))), s(s(x'''''''''')))
QUOT(s(s(s(s(s(x''''''''''))))), s(s(s(s(s(0))))), s(s(x''''''''''''))) -> QUOT(s(s(s(s(x'''''''''')))), s(s(s(s(0)))), s(s(x'''''''''''')))
QUOT(s(s(s(s(s(s(x'''''''''')))))), s(s(s(s(s(s(y'''''''''')))))), z'''''''''') -> QUOT(s(s(s(s(s(x''''''''''))))), s(s(s(s(s(y''''''''''))))), z'''''''''')
QUOT(x, 0, s(s(s(s(s(s(x''))))))) -> QUOT(x, s(s(s(s(s(plus(x'', s(0))))))), s(s(s(s(s(s(x'')))))))
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
innermost
one new Dependency Pair is created:
QUOT(s(s(s(s(x'''''''')))), s(s(s(s(0)))), s(s(x''''''''''))) -> QUOT(s(s(s(x''''''''))), s(s(s(0))), s(s(x'''''''''')))
QUOT(s(s(s(s(x''''''''0)))), s(s(s(s(0)))), s(s(s(x'''''''''''')))) -> QUOT(s(s(s(x''''''''0))), s(s(s(0))), s(s(s(x''''''''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳FwdInst
...
→DP Problem 39
↳Forward Instantiation Transformation
QUOT(x, 0, s(s(s(s(s(0)))))) -> QUOT(x, s(s(s(s(s(0))))), s(s(s(s(s(0))))))
QUOT(s(x'''0'), s(0), s(s(s(s(s(0)))))) -> QUOT(x'''0', 0, s(s(s(s(s(0))))))
QUOT(s(s(x''''0')), s(s(0)), s(s(s(s(s(x''''''')))))) -> QUOT(s(x''''0'), s(0), s(s(s(s(s(x'''''''))))))
QUOT(s(s(s(s(x'''''''''')))), 0, s(s(s(s(0))))) -> QUOT(s(s(s(s(x'''''''''')))), s(s(s(s(0)))), s(s(s(s(0)))))
QUOT(s(s(s(s(s(x''''''''''''))))), s(0), s(s(s(s(0))))) -> QUOT(s(s(s(s(x'''''''''''')))), 0, s(s(s(s(0)))))
QUOT(s(s(x''''0')), s(s(0)), s(s(s(s(0))))) -> QUOT(s(x''''0'), s(0), s(s(s(s(0)))))
QUOT(s(s(s(x''''''''))), 0, s(s(s(0)))) -> QUOT(s(s(s(x''''''''))), s(s(s(0))), s(s(s(0))))
QUOT(s(s(s(s(x'''''''''')))), s(0), s(s(s(0)))) -> QUOT(s(s(s(x''''''''''))), 0, s(s(s(0))))
QUOT(s(s(x''''0')), s(s(0)), s(s(s(0)))) -> QUOT(s(x''''0'), s(0), s(s(s(0))))
QUOT(s(s(s(x'''''''))), s(s(s(0))), s(s(s(x'''''''''')))) -> QUOT(s(s(x''''''')), s(s(0)), s(s(s(x''''''''''))))
QUOT(s(s(s(s(x''''''''0)))), s(s(s(s(0)))), s(s(s(x'''''''''''')))) -> QUOT(s(s(s(x''''''''0))), s(s(s(0))), s(s(s(x''''''''''''))))
QUOT(s(s(s(s(s(x''''''''''))))), s(s(s(s(s(0))))), s(s(x''''''''''''))) -> QUOT(s(s(s(s(x'''''''''')))), s(s(s(s(0)))), s(s(x'''''''''''')))
QUOT(s(s(s(s(s(s(x'''''''''')))))), s(s(s(s(s(s(y'''''''''')))))), z'''''''''') -> QUOT(s(s(s(s(s(x''''''''''))))), s(s(s(s(s(y''''''''''))))), z'''''''''')
QUOT(x, 0, s(s(s(s(s(s(x''))))))) -> QUOT(x, s(s(s(s(s(plus(x'', s(0))))))), s(s(s(s(s(s(x'')))))))
QUOT(s(x'''0'), s(0), s(s(s(s(s(s(x''''))))))) -> QUOT(x'''0', 0, s(s(s(s(s(s(x'''')))))))
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
innermost
three new Dependency Pairs are created:
QUOT(s(s(s(x'''''''))), s(s(s(0))), s(s(s(x'''''''''')))) -> QUOT(s(s(x''''''')), s(s(0)), s(s(s(x''''''''''))))
QUOT(s(s(s(x''''''''))), s(s(s(0))), s(s(s(0)))) -> QUOT(s(s(x'''''''')), s(s(0)), s(s(s(0))))
QUOT(s(s(s(x''''''''))), s(s(s(0))), s(s(s(s(0))))) -> QUOT(s(s(x'''''''')), s(s(0)), s(s(s(s(0)))))
QUOT(s(s(s(x'''''''0))), s(s(s(0))), s(s(s(s(s(x''''''''')))))) -> QUOT(s(s(x'''''''0)), s(s(0)), s(s(s(s(s(x'''''''''))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳FwdInst
...
→DP Problem 40
↳Forward Instantiation Transformation
QUOT(s(s(s(x''''''''))), 0, s(s(s(0)))) -> QUOT(s(s(s(x''''''''))), s(s(s(0))), s(s(s(0))))
QUOT(s(s(s(s(x'''''''''')))), s(0), s(s(s(0)))) -> QUOT(s(s(s(x''''''''''))), 0, s(s(s(0))))
QUOT(s(s(x''''0')), s(s(0)), s(s(s(0)))) -> QUOT(s(x''''0'), s(0), s(s(s(0))))
QUOT(s(s(s(x''''''''))), s(s(s(0))), s(s(s(0)))) -> QUOT(s(s(x'''''''')), s(s(0)), s(s(s(0))))
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
innermost
one new Dependency Pair is created:
QUOT(s(s(x''''0')), s(s(0)), s(s(s(0)))) -> QUOT(s(x''''0'), s(0), s(s(s(0))))
QUOT(s(s(s(s(s(x''''''''''''))))), s(s(0)), s(s(s(0)))) -> QUOT(s(s(s(s(x'''''''''''')))), s(0), s(s(s(0))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳FwdInst
...
→DP Problem 42
↳Argument Filtering and Ordering
QUOT(s(s(s(s(x'''''''''')))), s(0), s(s(s(0)))) -> QUOT(s(s(s(x''''''''''))), 0, s(s(s(0))))
QUOT(s(s(s(s(s(x''''''''''''))))), s(s(0)), s(s(s(0)))) -> QUOT(s(s(s(s(x'''''''''''')))), s(0), s(s(s(0))))
QUOT(s(s(s(x''''''''))), s(s(s(0))), s(s(s(0)))) -> QUOT(s(s(x'''''''')), s(s(0)), s(s(s(0))))
QUOT(s(s(s(x''''''''))), 0, s(s(s(0)))) -> QUOT(s(s(s(x''''''''))), s(s(s(0))), s(s(s(0))))
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
innermost
QUOT(s(s(s(s(x'''''''''')))), s(0), s(s(s(0)))) -> QUOT(s(s(s(x''''''''''))), 0, s(s(s(0))))
QUOT(s(s(s(s(s(x''''''''''''))))), s(s(0)), s(s(s(0)))) -> QUOT(s(s(s(s(x'''''''''''')))), s(0), s(s(s(0))))
QUOT(s(s(s(x''''''''))), s(s(s(0))), s(s(s(0)))) -> QUOT(s(s(x'''''''')), s(s(0)), s(s(s(0))))
QUOT(x1, x2, x3) -> x1
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳FwdInst
...
→DP Problem 46
↳Dependency Graph
QUOT(s(s(s(x''''''''))), 0, s(s(s(0)))) -> QUOT(s(s(s(x''''''''))), s(s(s(0))), s(s(s(0))))
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳FwdInst
...
→DP Problem 41
↳Forward Instantiation Transformation
QUOT(s(s(s(s(s(s(x'''''''''')))))), s(s(s(s(s(s(y'''''''''')))))), z'''''''''') -> QUOT(s(s(s(s(s(x''''''''''))))), s(s(s(s(s(y''''''''''))))), z'''''''''')
QUOT(x, 0, s(s(s(s(s(s(x''))))))) -> QUOT(x, s(s(s(s(s(plus(x'', s(0))))))), s(s(s(s(s(s(x'')))))))
QUOT(s(x'''0'), s(0), s(s(s(s(s(s(x''''))))))) -> QUOT(x'''0', 0, s(s(s(s(s(s(x'''')))))))
QUOT(s(x'''0'), s(0), s(s(s(s(s(0)))))) -> QUOT(x'''0', 0, s(s(s(s(s(0))))))
QUOT(s(s(x''''0')), s(s(0)), s(s(s(s(s(x''''''')))))) -> QUOT(s(x''''0'), s(0), s(s(s(s(s(x'''''''))))))
QUOT(s(s(s(x'''''''0))), s(s(s(0))), s(s(s(s(s(x''''''''')))))) -> QUOT(s(s(x'''''''0)), s(s(0)), s(s(s(s(s(x'''''''''))))))
QUOT(s(s(s(s(x'''''''''')))), 0, s(s(s(s(0))))) -> QUOT(s(s(s(s(x'''''''''')))), s(s(s(s(0)))), s(s(s(s(0)))))
QUOT(s(s(s(s(s(x''''''''''''))))), s(0), s(s(s(s(0))))) -> QUOT(s(s(s(s(x'''''''''''')))), 0, s(s(s(s(0)))))
QUOT(s(s(x''''0')), s(s(0)), s(s(s(s(0))))) -> QUOT(s(x''''0'), s(0), s(s(s(s(0)))))
QUOT(s(s(s(x''''''''))), s(s(s(0))), s(s(s(s(0))))) -> QUOT(s(s(x'''''''')), s(s(0)), s(s(s(s(0)))))
QUOT(s(s(s(s(x''''''''0)))), s(s(s(s(0)))), s(s(s(x'''''''''''')))) -> QUOT(s(s(s(x''''''''0))), s(s(s(0))), s(s(s(x''''''''''''))))
QUOT(s(s(s(s(s(x''''''''''))))), s(s(s(s(s(0))))), s(s(x''''''''''''))) -> QUOT(s(s(s(s(x'''''''''')))), s(s(s(s(0)))), s(s(x'''''''''''')))
QUOT(x, 0, s(s(s(s(s(0)))))) -> QUOT(x, s(s(s(s(s(0))))), s(s(s(s(s(0))))))
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
innermost
one new Dependency Pair is created:
QUOT(s(s(x''''0')), s(s(0)), s(s(s(s(0))))) -> QUOT(s(x''''0'), s(0), s(s(s(s(0)))))
QUOT(s(s(s(s(s(s(x'''''''''''''')))))), s(s(0)), s(s(s(s(0))))) -> QUOT(s(s(s(s(s(x''''''''''''''))))), s(0), s(s(s(s(0)))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳FwdInst
...
→DP Problem 43
↳Forward Instantiation Transformation
QUOT(x, 0, s(s(s(s(s(s(x''))))))) -> QUOT(x, s(s(s(s(s(plus(x'', s(0))))))), s(s(s(s(s(s(x'')))))))
QUOT(s(x'''0'), s(0), s(s(s(s(s(s(x''''))))))) -> QUOT(x'''0', 0, s(s(s(s(s(s(x'''')))))))
QUOT(x, 0, s(s(s(s(s(0)))))) -> QUOT(x, s(s(s(s(s(0))))), s(s(s(s(s(0))))))
QUOT(s(x'''0'), s(0), s(s(s(s(s(0)))))) -> QUOT(x'''0', 0, s(s(s(s(s(0))))))
QUOT(s(s(x''''0')), s(s(0)), s(s(s(s(s(x''''''')))))) -> QUOT(s(x''''0'), s(0), s(s(s(s(s(x'''''''))))))
QUOT(s(s(s(x'''''''0))), s(s(s(0))), s(s(s(s(s(x''''''''')))))) -> QUOT(s(s(x'''''''0)), s(s(0)), s(s(s(s(s(x'''''''''))))))
QUOT(s(s(s(s(x'''''''''')))), 0, s(s(s(s(0))))) -> QUOT(s(s(s(s(x'''''''''')))), s(s(s(s(0)))), s(s(s(s(0)))))
QUOT(s(s(s(s(s(x''''''''''''))))), s(0), s(s(s(s(0))))) -> QUOT(s(s(s(s(x'''''''''''')))), 0, s(s(s(s(0)))))
QUOT(s(s(s(s(s(s(x'''''''''''''')))))), s(s(0)), s(s(s(s(0))))) -> QUOT(s(s(s(s(s(x''''''''''''''))))), s(0), s(s(s(s(0)))))
QUOT(s(s(s(x''''''''))), s(s(s(0))), s(s(s(s(0))))) -> QUOT(s(s(x'''''''')), s(s(0)), s(s(s(s(0)))))
QUOT(s(s(s(s(x''''''''0)))), s(s(s(s(0)))), s(s(s(x'''''''''''')))) -> QUOT(s(s(s(x''''''''0))), s(s(s(0))), s(s(s(x''''''''''''))))
QUOT(s(s(s(s(s(x''''''''''))))), s(s(s(s(s(0))))), s(s(x''''''''''''))) -> QUOT(s(s(s(s(x'''''''''')))), s(s(s(s(0)))), s(s(x'''''''''''')))
QUOT(s(s(s(s(s(s(x'''''''''')))))), s(s(s(s(s(s(y'''''''''')))))), z'''''''''') -> QUOT(s(s(s(s(s(x''''''''''))))), s(s(s(s(s(y''''''''''))))), z'''''''''')
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
innermost
two new Dependency Pairs are created:
QUOT(s(s(x''''0')), s(s(0)), s(s(s(s(s(x''''''')))))) -> QUOT(s(x''''0'), s(0), s(s(s(s(s(x'''''''))))))
QUOT(s(s(x''''0'')), s(s(0)), s(s(s(s(s(0)))))) -> QUOT(s(x''''0''), s(0), s(s(s(s(s(0))))))
QUOT(s(s(x''''0'')), s(s(0)), s(s(s(s(s(s(x''''''))))))) -> QUOT(s(x''''0''), s(0), s(s(s(s(s(s(x'''''')))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳FwdInst
...
→DP Problem 44
↳Remaining Obligation(s)
QUOT(s(x'''0'), s(0), s(s(s(s(s(s(x''''))))))) -> QUOT(x'''0', 0, s(s(s(s(s(s(x'''')))))))
QUOT(s(s(x''''0'')), s(s(0)), s(s(s(s(s(s(x''''''))))))) -> QUOT(s(x''''0''), s(0), s(s(s(s(s(s(x'''''')))))))
QUOT(x, 0, s(s(s(s(s(0)))))) -> QUOT(x, s(s(s(s(s(0))))), s(s(s(s(s(0))))))
QUOT(s(x'''0'), s(0), s(s(s(s(s(0)))))) -> QUOT(x'''0', 0, s(s(s(s(s(0))))))
QUOT(s(s(x''''0'')), s(s(0)), s(s(s(s(s(0)))))) -> QUOT(s(x''''0''), s(0), s(s(s(s(s(0))))))
QUOT(s(s(s(x'''''''0))), s(s(s(0))), s(s(s(s(s(x''''''''')))))) -> QUOT(s(s(x'''''''0)), s(s(0)), s(s(s(s(s(x'''''''''))))))
QUOT(s(s(s(s(x'''''''''')))), 0, s(s(s(s(0))))) -> QUOT(s(s(s(s(x'''''''''')))), s(s(s(s(0)))), s(s(s(s(0)))))
QUOT(s(s(s(s(s(x''''''''''''))))), s(0), s(s(s(s(0))))) -> QUOT(s(s(s(s(x'''''''''''')))), 0, s(s(s(s(0)))))
QUOT(s(s(s(s(s(s(x'''''''''''''')))))), s(s(0)), s(s(s(s(0))))) -> QUOT(s(s(s(s(s(x''''''''''''''))))), s(0), s(s(s(s(0)))))
QUOT(s(s(s(x''''''''))), s(s(s(0))), s(s(s(s(0))))) -> QUOT(s(s(x'''''''')), s(s(0)), s(s(s(s(0)))))
QUOT(s(s(s(s(x''''''''0)))), s(s(s(s(0)))), s(s(s(x'''''''''''')))) -> QUOT(s(s(s(x''''''''0))), s(s(s(0))), s(s(s(x''''''''''''))))
QUOT(s(s(s(s(s(x''''''''''))))), s(s(s(s(s(0))))), s(s(x''''''''''''))) -> QUOT(s(s(s(s(x'''''''''')))), s(s(s(s(0)))), s(s(x'''''''''''')))
QUOT(s(s(s(s(s(s(x'''''''''')))))), s(s(s(s(s(s(y'''''''''')))))), z'''''''''') -> QUOT(s(s(s(s(s(x''''''''''))))), s(s(s(s(s(y''''''''''))))), z'''''''''')
QUOT(x, 0, s(s(s(s(s(s(x''))))))) -> QUOT(x, s(s(s(s(s(plus(x'', s(0))))))), s(s(s(s(s(s(x'')))))))
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
innermost