R
↳Dependency Pair Analysis
QUOT(s(x), s(y), z) -> QUOT(x, y, z)
QUOT(x, 0, s(z)) -> QUOT(x, s(z), s(z))
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
QUOT(x, 0, s(z)) -> QUOT(x, s(z), s(z))
QUOT(s(x), s(y), z) -> QUOT(x, y, z)
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, s(z), s(z)))
innermost
two new Dependency Pairs are created:
QUOT(s(x), s(y), z) -> QUOT(x, y, z)
QUOT(s(s(x'')), s(s(y'')), z'') -> QUOT(s(x''), s(y''), z'')
QUOT(s(x''), s(0), s(z'')) -> QUOT(x'', 0, s(z''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Forward Instantiation Transformation
QUOT(s(x''), s(0), s(z'')) -> QUOT(x'', 0, s(z''))
QUOT(s(s(x'')), s(s(y'')), z'') -> QUOT(s(x''), s(y''), z'')
QUOT(x, 0, s(z)) -> QUOT(x, s(z), s(z))
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, s(z), s(z)))
innermost
two new Dependency Pairs are created:
QUOT(x, 0, s(z)) -> QUOT(x, s(z), s(z))
QUOT(s(s(x'''')), 0, s(s(y''''))) -> QUOT(s(s(x'''')), s(s(y'''')), s(s(y'''')))
QUOT(s(x''''), 0, s(0)) -> QUOT(s(x''''), s(0), s(0))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 3
↳Forward Instantiation Transformation
QUOT(s(x''''), 0, s(0)) -> QUOT(s(x''''), s(0), s(0))
QUOT(s(s(x'')), s(s(y'')), z'') -> QUOT(s(x''), s(y''), z'')
QUOT(s(s(x'''')), 0, s(s(y''''))) -> QUOT(s(s(x'''')), s(s(y'''')), s(s(y'''')))
QUOT(s(x''), s(0), s(z'')) -> QUOT(x'', 0, s(z''))
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, s(z), s(z)))
innermost
two new Dependency Pairs are created:
QUOT(s(s(x'')), s(s(y'')), z'') -> QUOT(s(x''), s(y''), z'')
QUOT(s(s(s(x''''))), s(s(s(y''''))), z'''') -> QUOT(s(s(x'''')), s(s(y'''')), z'''')
QUOT(s(s(x'''')), s(s(0)), s(z'''')) -> QUOT(s(x''''), s(0), s(z''''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 4
↳Forward Instantiation Transformation
QUOT(s(s(x'''')), s(s(0)), s(z'''')) -> QUOT(s(x''''), s(0), s(z''''))
QUOT(s(s(s(x''''))), s(s(s(y''''))), z'''') -> QUOT(s(s(x'''')), s(s(y'''')), z'''')
QUOT(s(s(x'''')), 0, s(s(y''''))) -> QUOT(s(s(x'''')), s(s(y'''')), s(s(y'''')))
QUOT(s(x''), s(0), s(z'')) -> QUOT(x'', 0, s(z''))
QUOT(s(x''''), 0, s(0)) -> QUOT(s(x''''), s(0), s(0))
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, s(z), s(z)))
innermost
two new Dependency Pairs are created:
QUOT(s(x''), s(0), s(z'')) -> QUOT(x'', 0, s(z''))
QUOT(s(s(s(x''''''))), s(0), s(s(y''''''))) -> QUOT(s(s(x'''''')), 0, s(s(y'''''')))
QUOT(s(s(x'''''')), s(0), s(0)) -> QUOT(s(x''''''), 0, s(0))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 5
↳Forward Instantiation Transformation
QUOT(s(x''''), 0, s(0)) -> QUOT(s(x''''), s(0), s(0))
QUOT(s(s(x'''''')), s(0), s(0)) -> QUOT(s(x''''''), 0, s(0))
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, s(z), s(z)))
innermost
one new Dependency Pair is created:
QUOT(s(x''''), 0, s(0)) -> QUOT(s(x''''), s(0), s(0))
QUOT(s(s(x'''''''')), 0, s(0)) -> QUOT(s(s(x'''''''')), s(0), s(0))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 7
↳Polynomial Ordering
QUOT(s(s(x'''''''')), 0, s(0)) -> QUOT(s(s(x'''''''')), s(0), s(0))
QUOT(s(s(x'''''')), s(0), s(0)) -> QUOT(s(x''''''), 0, s(0))
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, s(z), s(z)))
innermost
QUOT(s(s(x'''''')), s(0), s(0)) -> QUOT(s(x''''''), 0, s(0))
POL(QUOT(x1, x2, x3)) = x1 + x3 POL(0) = 0 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 9
↳Dependency Graph
QUOT(s(s(x'''''''')), 0, s(0)) -> QUOT(s(s(x'''''''')), s(0), s(0))
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, s(z), s(z)))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 6
↳Forward Instantiation Transformation
QUOT(s(s(s(x''''))), s(s(s(y''''))), z'''') -> QUOT(s(s(x'''')), s(s(y'''')), z'''')
QUOT(s(s(x'''')), 0, s(s(y''''))) -> QUOT(s(s(x'''')), s(s(y'''')), s(s(y'''')))
QUOT(s(s(s(x''''''))), s(0), s(s(y''''''))) -> QUOT(s(s(x'''''')), 0, s(s(y'''''')))
QUOT(s(s(x'''')), s(s(0)), s(z'''')) -> QUOT(s(x''''), s(0), s(z''''))
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, s(z), s(z)))
innermost
two new Dependency Pairs are created:
QUOT(s(s(x'''')), 0, s(s(y''''))) -> QUOT(s(s(x'''')), s(s(y'''')), s(s(y'''')))
QUOT(s(s(s(x''''''))), 0, s(s(s(y'''''')))) -> QUOT(s(s(s(x''''''))), s(s(s(y''''''))), s(s(s(y''''''))))
QUOT(s(s(x'''''')), 0, s(s(0))) -> QUOT(s(s(x'''''')), s(s(0)), s(s(0)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 8
↳Polynomial Ordering
QUOT(s(s(x'''''')), 0, s(s(0))) -> QUOT(s(s(x'''''')), s(s(0)), s(s(0)))
QUOT(s(s(s(x''''''))), 0, s(s(s(y'''''')))) -> QUOT(s(s(s(x''''''))), s(s(s(y''''''))), s(s(s(y''''''))))
QUOT(s(s(s(x''''''))), s(0), s(s(y''''''))) -> QUOT(s(s(x'''''')), 0, s(s(y'''''')))
QUOT(s(s(x'''')), s(s(0)), s(z'''')) -> QUOT(s(x''''), s(0), s(z''''))
QUOT(s(s(s(x''''))), s(s(s(y''''))), z'''') -> QUOT(s(s(x'''')), s(s(y'''')), z'''')
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, s(z), s(z)))
innermost
QUOT(s(s(s(x''''''))), s(0), s(s(y''''''))) -> QUOT(s(s(x'''''')), 0, s(s(y'''''')))
QUOT(s(s(x'''')), s(s(0)), s(z'''')) -> QUOT(s(x''''), s(0), s(z''''))
QUOT(s(s(s(x''''))), s(s(s(y''''))), z'''') -> QUOT(s(s(x'''')), s(s(y'''')), z'''')
POL(QUOT(x1, x2, x3)) = 1 + x1 + x3 POL(0) = 0 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 10
↳Dependency Graph
QUOT(s(s(x'''''')), 0, s(s(0))) -> QUOT(s(s(x'''''')), s(s(0)), s(s(0)))
QUOT(s(s(s(x''''''))), 0, s(s(s(y'''''')))) -> QUOT(s(s(s(x''''''))), s(s(s(y''''''))), s(s(s(y''''''))))
quot(0, s(y), s(z)) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(quot(x, s(z), s(z)))
innermost