R
↳Dependency Pair Analysis
F(1) -> F(g(1))
F(1) -> G(1)
G(0) -> G(f(0))
G(0) -> F(0)
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
→DP Problem 2
↳AFS
F(1) -> F(g(1))
f(1) -> f(g(1))
f(f(x)) -> f(x)
g(0) -> g(f(0))
g(g(x)) -> g(x)
innermost
F(1) -> F(g(1))
g(0) -> g(f(0))
g(g(x)) -> g(x)
f(1) -> f(g(1))
f(f(x)) -> f(x)
POL(g) = 0 POL(1) = 1 POL(F(x1)) = x1 POL(f(x1)) = x1
F(x1) -> F(x1)
g(x1) -> g
f(x1) -> f(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 3
↳Dependency Graph
→DP Problem 2
↳AFS
f(1) -> f(g(1))
f(f(x)) -> f(x)
g(0) -> g(f(0))
g(g(x)) -> g(x)
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Argument Filtering and Ordering
G(0) -> G(f(0))
f(1) -> f(g(1))
f(f(x)) -> f(x)
g(0) -> g(f(0))
g(g(x)) -> g(x)
innermost
G(0) -> G(f(0))
f(1) -> f(g(1))
f(f(x)) -> f(x)
g(0) -> g(f(0))
g(g(x)) -> g(x)
POL(0) = 1 POL(g(x1)) = x1 POL(G(x1)) = x1 POL(f) = 0
G(x1) -> G(x1)
f(x1) -> f
g(x1) -> g(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 4
↳Dependency Graph
f(1) -> f(g(1))
f(f(x)) -> f(x)
g(0) -> g(f(0))
g(g(x)) -> g(x)
innermost