R
↳Dependency Pair Analysis
F(x, c(x), c(y)) -> F(y, y, f(y, x, y))
F(x, c(x), c(y)) -> F(y, x, y)
F(s(x), y, z) -> F(x, s(c(y)), c(z))
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
→DP Problem 2
↳Polo
F(s(x), y, z) -> F(x, s(c(y)), c(z))
f(x, c(x), c(y)) -> f(y, y, f(y, x, y))
f(s(x), y, z) -> f(x, s(c(y)), c(z))
f(c(x), x, y) -> c(y)
g(x, y) -> x
g(x, y) -> y
innermost
F(s(x), y, z) -> F(x, s(c(y)), c(z))
POL(c(x1)) = 0 POL(s(x1)) = 1 + x1 POL(F(x1, x2, x3)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 3
↳Dependency Graph
→DP Problem 2
↳Polo
f(x, c(x), c(y)) -> f(y, y, f(y, x, y))
f(s(x), y, z) -> f(x, s(c(y)), c(z))
f(c(x), x, y) -> c(y)
g(x, y) -> x
g(x, y) -> y
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polynomial Ordering
F(x, c(x), c(y)) -> F(y, x, y)
f(x, c(x), c(y)) -> f(y, y, f(y, x, y))
f(s(x), y, z) -> f(x, s(c(y)), c(z))
f(c(x), x, y) -> c(y)
g(x, y) -> x
g(x, y) -> y
innermost
F(x, c(x), c(y)) -> F(y, x, y)
POL(c(x1)) = 1 + x1 POL(F(x1, x2, x3)) = x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 4
↳Dependency Graph
f(x, c(x), c(y)) -> f(y, y, f(y, x, y))
f(s(x), y, z) -> f(x, s(c(y)), c(z))
f(c(x), x, y) -> c(y)
g(x, y) -> x
g(x, y) -> y
innermost