Term Rewriting System R:
[x, y, z]
f(0, 1, g(x, y), z) -> f(g(x, y), g(x, y), g(x, y), h(x))
g(0, 1) -> 0
g(0, 1) -> 1
h(g(x, y)) -> h(x)
Innermost Termination of R to be shown.
R
↳Dependency Pair Analysis
R contains the following Dependency Pairs:
F(0, 1, g(x, y), z) -> F(g(x, y), g(x, y), g(x, y), h(x))
F(0, 1, g(x, y), z) -> H(x)
H(g(x, y)) -> H(x)
Furthermore, R contains one SCC.
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
Dependency Pair:
H(g(x, y)) -> H(x)
Rules:
f(0, 1, g(x, y), z) -> f(g(x, y), g(x, y), g(x, y), h(x))
g(0, 1) -> 0
g(0, 1) -> 1
h(g(x, y)) -> h(x)
Strategy:
innermost
The following dependency pair can be strictly oriented:
H(g(x, y)) -> H(x)
There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
trivial
resulting in one new DP problem.
Used Argument Filtering System: H(x1) -> H(x1)
g(x1, x2) -> g(x1, x2)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Dependency Graph
Dependency Pair:
Rules:
f(0, 1, g(x, y), z) -> f(g(x, y), g(x, y), g(x, y), h(x))
g(0, 1) -> 0
g(0, 1) -> 1
h(g(x, y)) -> h(x)
Strategy:
innermost
Using the Dependency Graph resulted in no new DP problems.
Innermost Termination of R successfully shown.
Duration:
0:00 minutes