Term Rewriting System R:
[x]
f(g(x), s(0)) -> f(g(x), g(x))
g(s(x)) -> s(g(x))
g(0) -> 0

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

F(g(x), s(0)) -> F(g(x), g(x))
G(s(x)) -> G(x)

Furthermore, R contains one SCC.


   R
DPs
       →DP Problem 1
Usable Rules (Innermost)


Dependency Pair:

G(s(x)) -> G(x)


Rules:


f(g(x), s(0)) -> f(g(x), g(x))
g(s(x)) -> s(g(x))
g(0) -> 0


Strategy:

innermost




As we are in the innermost case, we can delete all 3 non-usable-rules.


   R
DPs
       →DP Problem 1
UsableRules
           →DP Problem 2
Size-Change Principle


Dependency Pair:

G(s(x)) -> G(x)


Rule:

none


Strategy:

innermost




We number the DPs as follows:
  1. G(s(x)) -> G(x)
and get the following Size-Change Graph(s):
{1} , {1}
1>1

which lead(s) to this/these maximal multigraph(s):
{1} , {1}
1>1

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
s(x1) -> s(x1)

We obtain no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:00 minutes