Term Rewriting System R:
[x, ys, f, xs]
app(app(app(consif, true), x), ys) -> app(app(cons, x), ys)
app(app(app(consif, false), x), ys) -> ys
app(app(filter, f), nil) -> nil
app(app(filter, f), app(app(cons, x), xs)) -> app(app(app(consif, app(f, x)), x), app(app(filter, f), xs))
Innermost Termination of R to be shown.
R
↳Dependency Pair Analysis
R contains the following Dependency Pairs:
APP(app(app(consif, true), x), ys) -> APP(app(cons, x), ys)
APP(app(app(consif, true), x), ys) -> APP(cons, x)
APP(app(filter, f), app(app(cons, x), xs)) -> APP(app(app(consif, app(f, x)), x), app(app(filter, f), xs))
APP(app(filter, f), app(app(cons, x), xs)) -> APP(app(consif, app(f, x)), x)
APP(app(filter, f), app(app(cons, x), xs)) -> APP(consif, app(f, x))
APP(app(filter, f), app(app(cons, x), xs)) -> APP(f, x)
APP(app(filter, f), app(app(cons, x), xs)) -> APP(app(filter, f), xs)
Furthermore, R contains one SCC.
R
↳DPs
→DP Problem 1
↳Usable Rules (Innermost)
Dependency Pairs:
APP(app(filter, f), app(app(cons, x), xs)) -> APP(app(filter, f), xs)
APP(app(filter, f), app(app(cons, x), xs)) -> APP(f, x)
Rules:
app(app(app(consif, true), x), ys) -> app(app(cons, x), ys)
app(app(app(consif, false), x), ys) -> ys
app(app(filter, f), nil) -> nil
app(app(filter, f), app(app(cons, x), xs)) -> app(app(app(consif, app(f, x)), x), app(app(filter, f), xs))
Strategy:
innermost
As we are in the innermost case, we can delete all 4 non-usable-rules.
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳Size-Change Principle
Dependency Pairs:
APP(app(filter, f), app(app(cons, x), xs)) -> APP(app(filter, f), xs)
APP(app(filter, f), app(app(cons, x), xs)) -> APP(f, x)
Rule:
none
Strategy:
innermost
We number the DPs as follows:
- APP(app(filter, f), app(app(cons, x), xs)) -> APP(app(filter, f), xs)
- APP(app(filter, f), app(app(cons, x), xs)) -> APP(f, x)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
app(x1, x2) -> app(x1, x2)
We obtain no new DP problems.
Innermost Termination of R successfully shown.
Duration:
0:00 minutes