Term Rewriting System R:
[f, g, x]
app(app(app(comp, f), g), x) -> app(f, app(g, x))
app(twice, f) -> app(app(comp, f), f)

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

APP(app(app(comp, f), g), x) -> APP(f, app(g, x))
APP(app(app(comp, f), g), x) -> APP(g, x)
APP(twice, f) -> APP(app(comp, f), f)
APP(twice, f) -> APP(comp, f)

Furthermore, R contains one SCC.


   R
DPs
       →DP Problem 1
Size-Change Principle


Dependency Pairs:

APP(app(app(comp, f), g), x) -> APP(g, x)
APP(app(app(comp, f), g), x) -> APP(f, app(g, x))


Rules:


app(app(app(comp, f), g), x) -> app(f, app(g, x))
app(twice, f) -> app(app(comp, f), f)


Strategy:

innermost




We number the DPs as follows:
  1. APP(app(app(comp, f), g), x) -> APP(g, x)
  2. APP(app(app(comp, f), g), x) -> APP(f, app(g, x))
and get the following Size-Change Graph(s):
{2, 1} , {2, 1}
1>1
2=2
{2, 1} , {2, 1}
1>1

which lead(s) to this/these maximal multigraph(s):
{2, 1} , {2, 1}
1>1
2=2
{2, 1} , {2, 1}
1>1

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
trivial

We obtain no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:00 minutes