Term Rewriting System R:
[f, g, x]
app(app(app(comp, f), g), x) -> app(f, app(g, x))
app(twice, f) -> app(app(comp, f), f)

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

APP(app(app(comp, f), g), x) -> APP(f, app(g, x))
APP(app(app(comp, f), g), x) -> APP(g, x)
APP(twice, f) -> APP(app(comp, f), f)
APP(twice, f) -> APP(comp, f)

Furthermore, R contains one SCC.


   R
DPs
       →DP Problem 1
Narrowing Transformation


Dependency Pairs:

APP(twice, f) -> APP(app(comp, f), f)
APP(app(app(comp, f), g), x) -> APP(g, x)
APP(app(app(comp, f), g), x) -> APP(f, app(g, x))


Rules:


app(app(app(comp, f), g), x) -> app(f, app(g, x))
app(twice, f) -> app(app(comp, f), f)


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

APP(twice, f) -> APP(app(comp, f), f)
no new Dependency Pairs are created.
The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Nar
           →DP Problem 2
Polynomial Ordering


Dependency Pairs:

APP(app(app(comp, f), g), x) -> APP(f, app(g, x))
APP(app(app(comp, f), g), x) -> APP(g, x)


Rules:


app(app(app(comp, f), g), x) -> app(f, app(g, x))
app(twice, f) -> app(app(comp, f), f)


Strategy:

innermost




The following dependency pairs can be strictly oriented:

APP(app(app(comp, f), g), x) -> APP(f, app(g, x))
APP(app(app(comp, f), g), x) -> APP(g, x)


There are no usable rules for innermost w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(comp)=  1  
  POL(app(x1, x2))=  x1 + x2  
  POL(twice)=  1  
  POL(APP(x1, x2))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Nar
           →DP Problem 2
Polo
             ...
               →DP Problem 3
Dependency Graph


Dependency Pair:


Rules:


app(app(app(comp, f), g), x) -> app(f, app(g, x))
app(twice, f) -> app(app(comp, f), f)


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:00 minutes