R
↳Dependency Pair Analysis
APP(app(h, z), app(e, x)) -> APP(app(h, app(c, z)), app(app(d, z), x))
APP(app(h, z), app(e, x)) -> APP(h, app(c, z))
APP(app(h, z), app(e, x)) -> APP(c, z)
APP(app(h, z), app(e, x)) -> APP(app(d, z), x)
APP(app(h, z), app(e, x)) -> APP(d, z)
APP(app(d, z), app(app(g, 0), 0)) -> APP(e, 0)
APP(app(d, z), app(app(g, x), y)) -> APP(app(g, app(e, x)), app(app(d, z), y))
APP(app(d, z), app(app(g, x), y)) -> APP(g, app(e, x))
APP(app(d, z), app(app(g, x), y)) -> APP(e, x)
APP(app(d, z), app(app(g, x), y)) -> APP(app(d, z), y)
APP(app(d, app(c, z)), app(app(g, app(app(g, x), y)), 0)) -> APP(app(g, app(app(d, app(c, z)), app(app(g, x), y))), app(app(d, z), app(app(g, x), y)))
APP(app(d, app(c, z)), app(app(g, app(app(g, x), y)), 0)) -> APP(g, app(app(d, app(c, z)), app(app(g, x), y)))
APP(app(d, app(c, z)), app(app(g, app(app(g, x), y)), 0)) -> APP(app(d, app(c, z)), app(app(g, x), y))
APP(app(d, app(c, z)), app(app(g, app(app(g, x), y)), 0)) -> APP(app(d, z), app(app(g, x), y))
APP(app(d, app(c, z)), app(app(g, app(app(g, x), y)), 0)) -> APP(d, z)
APP(app(g, app(e, x)), app(e, y)) -> APP(e, app(app(g, x), y))
APP(app(g, app(e, x)), app(e, y)) -> APP(app(g, x), y)
APP(app(g, app(e, x)), app(e, y)) -> APP(g, x)
R
↳DPs
→DP Problem 1
↳Usable Rules (Innermost)
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
APP(app(g, app(e, x)), app(e, y)) -> APP(app(g, x), y)
app(app(h, z), app(e, x)) -> app(app(h, app(c, z)), app(app(d, z), x))
app(app(d, z), app(app(g, 0), 0)) -> app(e, 0)
app(app(d, z), app(app(g, x), y)) -> app(app(g, app(e, x)), app(app(d, z), y))
app(app(d, app(c, z)), app(app(g, app(app(g, x), y)), 0)) -> app(app(g, app(app(d, app(c, z)), app(app(g, x), y))), app(app(d, z), app(app(g, x), y)))
app(app(g, app(e, x)), app(e, y)) -> app(e, app(app(g, x), y))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 4
↳A-Transformation
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
APP(app(g, app(e, x)), app(e, y)) -> APP(app(g, x), y)
none
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 4
↳ATrans
...
→DP Problem 5
↳Size-Change Principle
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
G(e(x), e(y)) -> G(x, y)
none
innermost
|
|
trivial
e(x1) -> e(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳Usable Rules (Innermost)
→DP Problem 3
↳UsableRules
APP(app(d, app(c, z)), app(app(g, app(app(g, x), y)), 0)) -> APP(app(d, z), app(app(g, x), y))
APP(app(d, app(c, z)), app(app(g, app(app(g, x), y)), 0)) -> APP(app(d, app(c, z)), app(app(g, x), y))
APP(app(d, z), app(app(g, x), y)) -> APP(app(d, z), y)
app(app(h, z), app(e, x)) -> app(app(h, app(c, z)), app(app(d, z), x))
app(app(d, z), app(app(g, 0), 0)) -> app(e, 0)
app(app(d, z), app(app(g, x), y)) -> app(app(g, app(e, x)), app(app(d, z), y))
app(app(d, app(c, z)), app(app(g, app(app(g, x), y)), 0)) -> app(app(g, app(app(d, app(c, z)), app(app(g, x), y))), app(app(d, z), app(app(g, x), y)))
app(app(g, app(e, x)), app(e, y)) -> app(e, app(app(g, x), y))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 6
↳A-Transformation
→DP Problem 3
↳UsableRules
APP(app(d, app(c, z)), app(app(g, app(app(g, x), y)), 0)) -> APP(app(d, z), app(app(g, x), y))
APP(app(d, app(c, z)), app(app(g, app(app(g, x), y)), 0)) -> APP(app(d, app(c, z)), app(app(g, x), y))
APP(app(d, z), app(app(g, x), y)) -> APP(app(d, z), y)
none
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 6
↳ATrans
...
→DP Problem 7
↳Size-Change Principle
→DP Problem 3
↳UsableRules
D(c(z), g(g(x, y), 0)) -> D(z, g(x, y))
D(c(z), g(g(x, y), 0)) -> D(c(z), g(x, y))
D(z, g(x, y)) -> D(z, y)
none
innermost
|
|
|
|
trivial
c(x1) -> c(x1)
g(x1, x2) -> g(x1, x2)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳Usable Rules (Innermost)
APP(app(h, z), app(e, x)) -> APP(app(h, app(c, z)), app(app(d, z), x))
app(app(h, z), app(e, x)) -> app(app(h, app(c, z)), app(app(d, z), x))
app(app(d, z), app(app(g, 0), 0)) -> app(e, 0)
app(app(d, z), app(app(g, x), y)) -> app(app(g, app(e, x)), app(app(d, z), y))
app(app(d, app(c, z)), app(app(g, app(app(g, x), y)), 0)) -> app(app(g, app(app(d, app(c, z)), app(app(g, x), y))), app(app(d, z), app(app(g, x), y)))
app(app(g, app(e, x)), app(e, y)) -> app(e, app(app(g, x), y))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 8
↳A-Transformation
APP(app(h, z), app(e, x)) -> APP(app(h, app(c, z)), app(app(d, z), x))
app(app(g, app(e, x)), app(e, y)) -> app(e, app(app(g, x), y))
app(app(d, z), app(app(g, 0), 0)) -> app(e, 0)
app(app(d, z), app(app(g, x), y)) -> app(app(g, app(e, x)), app(app(d, z), y))
app(app(d, app(c, z)), app(app(g, app(app(g, x), y)), 0)) -> app(app(g, app(app(d, app(c, z)), app(app(g, x), y))), app(app(d, z), app(app(g, x), y)))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 8
↳ATrans
...
→DP Problem 9
↳Narrowing Transformation
H(z, e(x)) -> H(c(z), d(z, x))
g(e(x), e(y)) -> e(g(x, y))
d(z, g(0, 0)) -> e(0)
d(z, g(x, y)) -> g(e(x), d(z, y))
d(c(z), g(g(x, y), 0)) -> g(d(c(z), g(x, y)), d(z, g(x, y)))
innermost
three new Dependency Pairs are created:
H(z, e(x)) -> H(c(z), d(z, x))
H(z'', e(g(0, 0))) -> H(c(z''), e(0))
H(z'', e(g(x'', y'))) -> H(c(z''), g(e(x''), d(z'', y')))
H(c(z''), e(g(g(x'', y'), 0))) -> H(c(c(z'')), g(d(c(z''), g(x'', y')), d(z'', g(x'', y'))))
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 8
↳ATrans
...
→DP Problem 10
↳Instantiation Transformation
H(c(z''), e(g(g(x'', y'), 0))) -> H(c(c(z'')), g(d(c(z''), g(x'', y')), d(z'', g(x'', y'))))
H(z'', e(g(x'', y'))) -> H(c(z''), g(e(x''), d(z'', y')))
g(e(x), e(y)) -> e(g(x, y))
d(z, g(0, 0)) -> e(0)
d(z, g(x, y)) -> g(e(x), d(z, y))
d(c(z), g(g(x, y), 0)) -> g(d(c(z), g(x, y)), d(z, g(x, y)))
innermost
two new Dependency Pairs are created:
H(z'', e(g(x'', y'))) -> H(c(z''), g(e(x''), d(z'', y')))
H(c(z''''), e(g(x''', y''))) -> H(c(c(z'''')), g(e(x'''), d(c(z''''), y'')))
H(c(c(z'''')), e(g(x''', y''))) -> H(c(c(c(z''''))), g(e(x'''), d(c(c(z'''')), y'')))
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 8
↳ATrans
...
→DP Problem 11
↳Instantiation Transformation
H(c(c(z'''')), e(g(x''', y''))) -> H(c(c(c(z''''))), g(e(x'''), d(c(c(z'''')), y'')))
H(c(z''''), e(g(x''', y''))) -> H(c(c(z'''')), g(e(x'''), d(c(z''''), y'')))
H(c(z''), e(g(g(x'', y'), 0))) -> H(c(c(z'')), g(d(c(z''), g(x'', y')), d(z'', g(x'', y'))))
g(e(x), e(y)) -> e(g(x, y))
d(z, g(0, 0)) -> e(0)
d(z, g(x, y)) -> g(e(x), d(z, y))
d(c(z), g(g(x, y), 0)) -> g(d(c(z), g(x, y)), d(z, g(x, y)))
innermost
three new Dependency Pairs are created:
H(c(z''), e(g(g(x'', y'), 0))) -> H(c(c(z'')), g(d(c(z''), g(x'', y')), d(z'', g(x'', y'))))
H(c(c(z'''')), e(g(g(x''', y''), 0))) -> H(c(c(c(z''''))), g(d(c(c(z'''')), g(x''', y'')), d(c(z''''), g(x''', y''))))
H(c(c(z'''''')), e(g(g(x''', y''), 0))) -> H(c(c(c(z''''''))), g(d(c(c(z'''''')), g(x''', y'')), d(c(z''''''), g(x''', y''))))
H(c(c(c(z''''''))), e(g(g(x''', y''), 0))) -> H(c(c(c(c(z'''''')))), g(d(c(c(c(z''''''))), g(x''', y'')), d(c(c(z'''''')), g(x''', y''))))
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 8
↳ATrans
...
→DP Problem 12
↳Remaining Obligation(s)
H(c(c(c(z''''''))), e(g(g(x''', y''), 0))) -> H(c(c(c(c(z'''''')))), g(d(c(c(c(z''''''))), g(x''', y'')), d(c(c(z'''''')), g(x''', y''))))
H(c(c(z'''''')), e(g(g(x''', y''), 0))) -> H(c(c(c(z''''''))), g(d(c(c(z'''''')), g(x''', y'')), d(c(z''''''), g(x''', y''))))
H(c(c(z'''')), e(g(g(x''', y''), 0))) -> H(c(c(c(z''''))), g(d(c(c(z'''')), g(x''', y'')), d(c(z''''), g(x''', y''))))
H(c(z''''), e(g(x''', y''))) -> H(c(c(z'''')), g(e(x'''), d(c(z''''), y'')))
H(c(c(z'''')), e(g(x''', y''))) -> H(c(c(c(z''''))), g(e(x'''), d(c(c(z'''')), y'')))
g(e(x), e(y)) -> e(g(x, y))
d(z, g(0, 0)) -> e(0)
d(z, g(x, y)) -> g(e(x), d(z, y))
d(c(z), g(g(x, y), 0)) -> g(d(c(z), g(x, y)), d(z, g(x, y)))
innermost