R
↳Dependency Pair Analysis
APP(not, app(app(or, x), y)) -> APP(app(and, app(not, x)), app(not, y))
APP(not, app(app(or, x), y)) -> APP(and, app(not, x))
APP(not, app(app(or, x), y)) -> APP(not, x)
APP(not, app(app(or, x), y)) -> APP(not, y)
APP(not, app(app(and, x), y)) -> APP(app(or, app(not, x)), app(not, y))
APP(not, app(app(and, x), y)) -> APP(or, app(not, x))
APP(not, app(app(and, x), y)) -> APP(not, x)
APP(not, app(app(and, x), y)) -> APP(not, y)
APP(app(and, x), app(app(or, y), z)) -> APP(app(or, app(app(and, x), y)), app(app(and, x), z))
APP(app(and, x), app(app(or, y), z)) -> APP(or, app(app(and, x), y))
APP(app(and, x), app(app(or, y), z)) -> APP(app(and, x), y)
APP(app(and, x), app(app(or, y), z)) -> APP(app(and, x), z)
APP(app(and, app(app(or, y), z)), x) -> APP(app(or, app(app(and, x), y)), app(app(and, x), z))
APP(app(and, app(app(or, y), z)), x) -> APP(or, app(app(and, x), y))
APP(app(and, app(app(or, y), z)), x) -> APP(app(and, x), y)
APP(app(and, app(app(or, y), z)), x) -> APP(and, x)
APP(app(and, app(app(or, y), z)), x) -> APP(app(and, x), z)
R
↳DPs
→DP Problem 1
↳Usable Rules (Innermost)
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
APP(app(and, app(app(or, y), z)), x) -> APP(app(and, x), z)
APP(app(and, app(app(or, y), z)), x) -> APP(app(and, x), y)
APP(app(and, x), app(app(or, y), z)) -> APP(app(and, x), z)
APP(app(and, x), app(app(or, y), z)) -> APP(app(and, x), y)
app(not, app(not, x)) -> x
app(not, app(app(or, x), y)) -> app(app(and, app(not, x)), app(not, y))
app(not, app(app(and, x), y)) -> app(app(or, app(not, x)), app(not, y))
app(app(and, x), app(app(or, y), z)) -> app(app(or, app(app(and, x), y)), app(app(and, x), z))
app(app(and, app(app(or, y), z)), x) -> app(app(or, app(app(and, x), y)), app(app(and, x), z))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 4
↳A-Transformation
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
APP(app(and, app(app(or, y), z)), x) -> APP(app(and, x), z)
APP(app(and, app(app(or, y), z)), x) -> APP(app(and, x), y)
APP(app(and, x), app(app(or, y), z)) -> APP(app(and, x), z)
APP(app(and, x), app(app(or, y), z)) -> APP(app(and, x), y)
none
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 4
↳ATrans
...
→DP Problem 5
↳Size-Change Principle
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
AND(or(y, z), x) -> AND(x, z)
AND(or(y, z), x) -> AND(x, y)
AND(x, or(y, z)) -> AND(x, z)
AND(x, or(y, z)) -> AND(x, y)
none
innermost
|
|
|
|
trivial
or(x1, x2) -> or(x1, x2)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳Usable Rules (Innermost)
→DP Problem 3
↳UsableRules
APP(not, app(app(or, x), y)) -> APP(not, y)
APP(not, app(app(or, x), y)) -> APP(not, x)
app(not, app(not, x)) -> x
app(not, app(app(or, x), y)) -> app(app(and, app(not, x)), app(not, y))
app(not, app(app(and, x), y)) -> app(app(or, app(not, x)), app(not, y))
app(app(and, x), app(app(or, y), z)) -> app(app(or, app(app(and, x), y)), app(app(and, x), z))
app(app(and, app(app(or, y), z)), x) -> app(app(or, app(app(and, x), y)), app(app(and, x), z))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 6
↳A-Transformation
→DP Problem 3
↳UsableRules
APP(not, app(app(or, x), y)) -> APP(not, y)
APP(not, app(app(or, x), y)) -> APP(not, x)
none
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 6
↳ATrans
...
→DP Problem 7
↳Size-Change Principle
→DP Problem 3
↳UsableRules
NOT(or(x, y)) -> NOT(y)
NOT(or(x, y)) -> NOT(x)
none
innermost
|
|
trivial
or(x1, x2) -> or(x1, x2)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳Usable Rules (Innermost)
APP(not, app(app(and, x), y)) -> APP(not, y)
APP(not, app(app(and, x), y)) -> APP(not, x)
app(not, app(not, x)) -> x
app(not, app(app(or, x), y)) -> app(app(and, app(not, x)), app(not, y))
app(not, app(app(and, x), y)) -> app(app(or, app(not, x)), app(not, y))
app(app(and, x), app(app(or, y), z)) -> app(app(or, app(app(and, x), y)), app(app(and, x), z))
app(app(and, app(app(or, y), z)), x) -> app(app(or, app(app(and, x), y)), app(app(and, x), z))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 8
↳A-Transformation
APP(not, app(app(and, x), y)) -> APP(not, y)
APP(not, app(app(and, x), y)) -> APP(not, x)
none
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 8
↳ATrans
...
→DP Problem 9
↳Size-Change Principle
NOT(and(x, y)) -> NOT(y)
NOT(and(x, y)) -> NOT(x)
none
innermost
|
|
trivial
and(x1, x2) -> and(x1, x2)