R
↳Dependency Pair Analysis
APP(D, app(app(+, x), y)) -> APP(app(+, app(D, x)), app(D, y))
APP(D, app(app(+, x), y)) -> APP(+, app(D, x))
APP(D, app(app(+, x), y)) -> APP(D, x)
APP(D, app(app(+, x), y)) -> APP(D, y)
APP(D, app(app(*, x), y)) -> APP(app(+, app(app(*, y), app(D, x))), app(app(*, x), app(D, y)))
APP(D, app(app(*, x), y)) -> APP(+, app(app(*, y), app(D, x)))
APP(D, app(app(*, x), y)) -> APP(app(*, y), app(D, x))
APP(D, app(app(*, x), y)) -> APP(*, y)
APP(D, app(app(*, x), y)) -> APP(D, x)
APP(D, app(app(*, x), y)) -> APP(app(*, x), app(D, y))
APP(D, app(app(*, x), y)) -> APP(D, y)
APP(D, app(app(-, x), y)) -> APP(app(-, app(D, x)), app(D, y))
APP(D, app(app(-, x), y)) -> APP(-, app(D, x))
APP(D, app(app(-, x), y)) -> APP(D, x)
APP(D, app(app(-, x), y)) -> APP(D, y)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
APP(D, app(app(-, x), y)) -> APP(D, y)
APP(D, app(app(-, x), y)) -> APP(D, x)
APP(D, app(app(-, x), y)) -> APP(app(-, app(D, x)), app(D, y))
APP(D, app(app(*, x), y)) -> APP(D, y)
APP(D, app(app(*, x), y)) -> APP(D, x)
APP(D, app(app(*, x), y)) -> APP(app(*, y), app(D, x))
APP(D, app(app(*, x), y)) -> APP(app(+, app(app(*, y), app(D, x))), app(app(*, x), app(D, y)))
APP(D, app(app(+, x), y)) -> APP(D, y)
APP(D, app(app(+, x), y)) -> APP(D, x)
APP(D, app(app(+, x), y)) -> APP(app(+, app(D, x)), app(D, y))
app(D, t) -> 1
app(D, constant) -> 0
app(D, app(app(+, x), y)) -> app(app(+, app(D, x)), app(D, y))
app(D, app(app(*, x), y)) -> app(app(+, app(app(*, y), app(D, x))), app(app(*, x), app(D, y)))
app(D, app(app(-, x), y)) -> app(app(-, app(D, x)), app(D, y))
innermost
no new Dependency Pairs are created.
APP(D, app(app(+, x), y)) -> APP(app(+, app(D, x)), app(D, y))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Forward Instantiation Transformation
APP(D, app(app(-, x), y)) -> APP(D, x)
APP(D, app(app(-, x), y)) -> APP(app(-, app(D, x)), app(D, y))
APP(D, app(app(*, x), y)) -> APP(D, y)
APP(D, app(app(*, x), y)) -> APP(D, x)
APP(D, app(app(*, x), y)) -> APP(app(*, y), app(D, x))
APP(D, app(app(*, x), y)) -> APP(app(+, app(app(*, y), app(D, x))), app(app(*, x), app(D, y)))
APP(D, app(app(+, x), y)) -> APP(D, y)
APP(D, app(app(+, x), y)) -> APP(D, x)
APP(D, app(app(-, x), y)) -> APP(D, y)
app(D, t) -> 1
app(D, constant) -> 0
app(D, app(app(+, x), y)) -> app(app(+, app(D, x)), app(D, y))
app(D, app(app(*, x), y)) -> app(app(+, app(app(*, y), app(D, x))), app(app(*, x), app(D, y)))
app(D, app(app(-, x), y)) -> app(app(-, app(D, x)), app(D, y))
innermost
no new Dependency Pairs are created.
APP(D, app(app(*, x), y)) -> APP(app(+, app(app(*, y), app(D, x))), app(app(*, x), app(D, y)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 3
↳Forward Instantiation Transformation
APP(D, app(app(-, x), y)) -> APP(D, y)
APP(D, app(app(-, x), y)) -> APP(app(-, app(D, x)), app(D, y))
APP(D, app(app(*, x), y)) -> APP(D, y)
APP(D, app(app(*, x), y)) -> APP(D, x)
APP(D, app(app(*, x), y)) -> APP(app(*, y), app(D, x))
APP(D, app(app(+, x), y)) -> APP(D, y)
APP(D, app(app(+, x), y)) -> APP(D, x)
APP(D, app(app(-, x), y)) -> APP(D, x)
app(D, t) -> 1
app(D, constant) -> 0
app(D, app(app(+, x), y)) -> app(app(+, app(D, x)), app(D, y))
app(D, app(app(*, x), y)) -> app(app(+, app(app(*, y), app(D, x))), app(app(*, x), app(D, y)))
app(D, app(app(-, x), y)) -> app(app(-, app(D, x)), app(D, y))
innermost
no new Dependency Pairs are created.
APP(D, app(app(*, x), y)) -> APP(app(*, y), app(D, x))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 4
↳Forward Instantiation Transformation
APP(D, app(app(-, x), y)) -> APP(D, x)
APP(D, app(app(-, x), y)) -> APP(app(-, app(D, x)), app(D, y))
APP(D, app(app(*, x), y)) -> APP(D, y)
APP(D, app(app(*, x), y)) -> APP(D, x)
APP(D, app(app(+, x), y)) -> APP(D, y)
APP(D, app(app(+, x), y)) -> APP(D, x)
APP(D, app(app(-, x), y)) -> APP(D, y)
app(D, t) -> 1
app(D, constant) -> 0
app(D, app(app(+, x), y)) -> app(app(+, app(D, x)), app(D, y))
app(D, app(app(*, x), y)) -> app(app(+, app(app(*, y), app(D, x))), app(app(*, x), app(D, y)))
app(D, app(app(-, x), y)) -> app(app(-, app(D, x)), app(D, y))
innermost
no new Dependency Pairs are created.
APP(D, app(app(-, x), y)) -> APP(app(-, app(D, x)), app(D, y))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 5
↳Polynomial Ordering
APP(D, app(app(-, x), y)) -> APP(D, y)
APP(D, app(app(*, x), y)) -> APP(D, y)
APP(D, app(app(*, x), y)) -> APP(D, x)
APP(D, app(app(+, x), y)) -> APP(D, y)
APP(D, app(app(+, x), y)) -> APP(D, x)
APP(D, app(app(-, x), y)) -> APP(D, x)
app(D, t) -> 1
app(D, constant) -> 0
app(D, app(app(+, x), y)) -> app(app(+, app(D, x)), app(D, y))
app(D, app(app(*, x), y)) -> app(app(+, app(app(*, y), app(D, x))), app(app(*, x), app(D, y)))
app(D, app(app(-, x), y)) -> app(app(-, app(D, x)), app(D, y))
innermost
APP(D, app(app(+, x), y)) -> APP(D, y)
APP(D, app(app(+, x), y)) -> APP(D, x)
POL(*) = 0 POL(D) = 0 POL(-) = 0 POL(APP(x1, x2)) = 1 + x2 POL(app(x1, x2)) = x1 + x2 POL(+) = 1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 6
↳Polynomial Ordering
APP(D, app(app(-, x), y)) -> APP(D, y)
APP(D, app(app(*, x), y)) -> APP(D, y)
APP(D, app(app(*, x), y)) -> APP(D, x)
APP(D, app(app(-, x), y)) -> APP(D, x)
app(D, t) -> 1
app(D, constant) -> 0
app(D, app(app(+, x), y)) -> app(app(+, app(D, x)), app(D, y))
app(D, app(app(*, x), y)) -> app(app(+, app(app(*, y), app(D, x))), app(app(*, x), app(D, y)))
app(D, app(app(-, x), y)) -> app(app(-, app(D, x)), app(D, y))
innermost
APP(D, app(app(-, x), y)) -> APP(D, y)
APP(D, app(app(-, x), y)) -> APP(D, x)
POL(*) = 0 POL(D) = 0 POL(-) = 1 POL(APP(x1, x2)) = 1 + x2 POL(app(x1, x2)) = x1 + x2
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 7
↳Polynomial Ordering
APP(D, app(app(*, x), y)) -> APP(D, y)
APP(D, app(app(*, x), y)) -> APP(D, x)
app(D, t) -> 1
app(D, constant) -> 0
app(D, app(app(+, x), y)) -> app(app(+, app(D, x)), app(D, y))
app(D, app(app(*, x), y)) -> app(app(+, app(app(*, y), app(D, x))), app(app(*, x), app(D, y)))
app(D, app(app(-, x), y)) -> app(app(-, app(D, x)), app(D, y))
innermost
APP(D, app(app(*, x), y)) -> APP(D, y)
APP(D, app(app(*, x), y)) -> APP(D, x)
POL(*) = 1 POL(D) = 0 POL(APP(x1, x2)) = 1 + x2 POL(app(x1, x2)) = x1 + x2
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 8
↳Dependency Graph
app(D, t) -> 1
app(D, constant) -> 0
app(D, app(app(+, x), y)) -> app(app(+, app(D, x)), app(D, y))
app(D, app(app(*, x), y)) -> app(app(+, app(app(*, y), app(D, x))), app(app(*, x), app(D, y)))
app(D, app(app(-, x), y)) -> app(app(-, app(D, x)), app(D, y))
innermost