Term Rewriting System R:
[x]
app(f, app(g, x)) -> app(g, app(g, app(f, x)))
app(f, app(g, x)) -> app(g, app(g, app(g, x)))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

APP(f, app(g, x)) -> APP(g, app(g, app(f, x)))
APP(f, app(g, x)) -> APP(g, app(f, x))
APP(f, app(g, x)) -> APP(f, x)
APP(f, app(g, x)) -> APP(g, app(g, app(g, x)))
APP(f, app(g, x)) -> APP(g, app(g, x))

Furthermore, R contains one SCC.


   R
DPs
       →DP Problem 1
Forward Instantiation Transformation


Dependency Pair:

APP(f, app(g, x)) -> APP(f, x)


Rules:


app(f, app(g, x)) -> app(g, app(g, app(f, x)))
app(f, app(g, x)) -> app(g, app(g, app(g, x)))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

APP(f, app(g, x)) -> APP(f, x)
one new Dependency Pair is created:

APP(f, app(g, app(g, x''))) -> APP(f, app(g, x''))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 2
Remaining Obligation(s)




The following remains to be proven:
Dependency Pair:

APP(f, app(g, app(g, x''))) -> APP(f, app(g, x''))


Rules:


app(f, app(g, x)) -> app(g, app(g, app(f, x)))
app(f, app(g, x)) -> app(g, app(g, app(g, x)))


Strategy:

innermost



Innermost Termination of R could not be shown.
Duration:
0:00 minutes