Term Rewriting System R:
[x]
app(f, app(g, x)) -> app(g, app(g, app(f, x)))
app(f, app(g, x)) -> app(g, app(g, app(g, x)))

Innermost Termination of R to be shown.

`   R`
`     ↳Dependency Pair Analysis`

R contains the following Dependency Pairs:

APP(f, app(g, x)) -> APP(g, app(g, app(f, x)))
APP(f, app(g, x)) -> APP(g, app(f, x))
APP(f, app(g, x)) -> APP(f, x)
APP(f, app(g, x)) -> APP(g, app(g, app(g, x)))
APP(f, app(g, x)) -> APP(g, app(g, x))

Furthermore, R contains one SCC.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polynomial Ordering`

Dependency Pair:

APP(f, app(g, x)) -> APP(f, x)

Rules:

app(f, app(g, x)) -> app(g, app(g, app(f, x)))
app(f, app(g, x)) -> app(g, app(g, app(g, x)))

Strategy:

innermost

The following dependency pair can be strictly oriented:

APP(f, app(g, x)) -> APP(f, x)

There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(g) =  0 POL(APP(x1, x2)) =  x2 POL(f) =  0 POL(app(x1, x2)) =  1 + x2

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`           →DP Problem 2`
`             ↳Dependency Graph`

Dependency Pair:

Rules:

app(f, app(g, x)) -> app(g, app(g, app(f, x)))
app(f, app(g, x)) -> app(g, app(g, app(g, x)))

Strategy:

innermost

Using the Dependency Graph resulted in no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:00 minutes