R
↳Dependency Pair Analysis
APP(f, app(g, x)) -> APP(g, app(g, app(f, x)))
APP(f, app(g, x)) -> APP(g, app(f, x))
APP(f, app(g, x)) -> APP(f, x)
APP(f, app(g, x)) -> APP(g, app(g, app(g, x)))
APP(f, app(g, x)) -> APP(g, app(g, x))
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
APP(f, app(g, x)) -> APP(f, x)
app(f, app(g, x)) -> app(g, app(g, app(f, x)))
app(f, app(g, x)) -> app(g, app(g, app(g, x)))
innermost
one new Dependency Pair is created:
APP(f, app(g, x)) -> APP(f, x)
APP(f, app(g, app(g, x''))) -> APP(f, app(g, x''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Argument Filtering and Ordering
APP(f, app(g, app(g, x''))) -> APP(f, app(g, x''))
app(f, app(g, x)) -> app(g, app(g, app(f, x)))
app(f, app(g, x)) -> app(g, app(g, app(g, x)))
innermost
APP(f, app(g, app(g, x''))) -> APP(f, app(g, x''))
app(f, app(g, x)) -> app(g, app(g, app(f, x)))
app(f, app(g, x)) -> app(g, app(g, app(g, x)))
f > g
APP(x1, x2) -> APP(x1, x2)
app(x1, x2) -> app(x1, x2)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳AFS
...
→DP Problem 3
↳Dependency Graph
app(f, app(g, x)) -> app(g, app(g, app(f, x)))
app(f, app(g, x)) -> app(g, app(g, app(g, x)))
innermost