Term Rewriting System R:
[y, x]
app(app(le, 0), y) -> true
app(app(le, app(s, x)), 0) -> false
app(app(le, app(s, x)), app(s, y)) -> app(app(le, x), y)
app(pred, app(s, x)) -> x
app(app(minus, x), 0) -> x
app(app(minus, x), app(s, y)) -> app(pred, app(app(minus, x), y))
app(app(gcd, 0), y) -> y
app(app(gcd, app(s, x)), 0) -> app(s, x)
app(app(gcd, app(s, x)), app(s, y)) -> app(app(app(ifgcd, app(app(le, y), x)), app(s, x)), app(s, y))
app(app(app(ifgcd, true), app(s, x)), app(s, y)) -> app(app(gcd, app(app(minus, x), y)), app(s, y))
app(app(app(ifgcd, false), app(s, x)), app(s, y)) -> app(app(gcd, app(app(minus, y), x)), app(s, x))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

APP(app(le, app(s, x)), app(s, y)) -> APP(app(le, x), y)
APP(app(le, app(s, x)), app(s, y)) -> APP(le, x)
APP(app(minus, x), app(s, y)) -> APP(pred, app(app(minus, x), y))
APP(app(minus, x), app(s, y)) -> APP(app(minus, x), y)
APP(app(gcd, app(s, x)), app(s, y)) -> APP(app(app(ifgcd, app(app(le, y), x)), app(s, x)), app(s, y))
APP(app(gcd, app(s, x)), app(s, y)) -> APP(app(ifgcd, app(app(le, y), x)), app(s, x))
APP(app(gcd, app(s, x)), app(s, y)) -> APP(ifgcd, app(app(le, y), x))
APP(app(gcd, app(s, x)), app(s, y)) -> APP(app(le, y), x)
APP(app(gcd, app(s, x)), app(s, y)) -> APP(le, y)
APP(app(app(ifgcd, true), app(s, x)), app(s, y)) -> APP(app(gcd, app(app(minus, x), y)), app(s, y))
APP(app(app(ifgcd, true), app(s, x)), app(s, y)) -> APP(gcd, app(app(minus, x), y))
APP(app(app(ifgcd, true), app(s, x)), app(s, y)) -> APP(app(minus, x), y)
APP(app(app(ifgcd, true), app(s, x)), app(s, y)) -> APP(minus, x)
APP(app(app(ifgcd, false), app(s, x)), app(s, y)) -> APP(app(gcd, app(app(minus, y), x)), app(s, x))
APP(app(app(ifgcd, false), app(s, x)), app(s, y)) -> APP(gcd, app(app(minus, y), x))
APP(app(app(ifgcd, false), app(s, x)), app(s, y)) -> APP(app(minus, y), x)
APP(app(app(ifgcd, false), app(s, x)), app(s, y)) -> APP(minus, y)

Furthermore, R contains two SCCs.


   R
DPs
       →DP Problem 1
Remaining Obligation(s)
       →DP Problem 2
Remaining Obligation(s)




The following remains to be proven:


   R
DPs
       →DP Problem 1
Remaining Obligation(s)
       →DP Problem 2
Remaining Obligation(s)




The following remains to be proven:

Innermost Termination of R could not be shown.
Duration:
0:00 minutes