R
↳Dependency Pair Analysis
APP(app(app(f, 0), 1), x) -> APP(app(app(f, app(s, x)), x), x)
APP(app(app(f, 0), 1), x) -> APP(app(f, app(s, x)), x)
APP(app(app(f, 0), 1), x) -> APP(f, app(s, x))
APP(app(app(f, 0), 1), x) -> APP(s, x)
APP(app(app(f, x), y), app(s, z)) -> APP(s, app(app(app(f, 0), 1), z))
APP(app(app(f, x), y), app(s, z)) -> APP(app(app(f, 0), 1), z)
APP(app(app(f, x), y), app(s, z)) -> APP(app(f, 0), 1)
APP(app(app(f, x), y), app(s, z)) -> APP(f, 0)
R
↳DPs
→DP Problem 1
↳Usable Rules (Innermost)
APP(app(app(f, x), y), app(s, z)) -> APP(app(app(f, 0), 1), z)
APP(app(app(f, 0), 1), x) -> APP(app(app(f, app(s, x)), x), x)
app(app(app(f, 0), 1), x) -> app(app(app(f, app(s, x)), x), x)
app(app(app(f, x), y), app(s, z)) -> app(s, app(app(app(f, 0), 1), z))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳A-Transformation
APP(app(app(f, x), y), app(s, z)) -> APP(app(app(f, 0), 1), z)
APP(app(app(f, 0), 1), x) -> APP(app(app(f, app(s, x)), x), x)
none
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳ATrans
...
→DP Problem 3
↳Size-Change Principle
F(x, y, s(z)) -> F(0, 1, z)
F(0, 1, x) -> F(s(x), x, x)
none
innermost
|
|
|
|
|
trivial
s(x1) -> s(x1)