Term Rewriting System R:
[x, y]
app(f, app(s, x)) -> app(f, x)
app(g, app(app(cons, 0), y)) -> app(g, y)
app(g, app(app(cons, app(s, x)), y)) -> app(s, x)
app(h, app(app(cons, x), y)) -> app(h, app(g, app(app(cons, x), y)))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

APP(f, app(s, x)) -> APP(f, x)
APP(g, app(app(cons, 0), y)) -> APP(g, y)
APP(h, app(app(cons, x), y)) -> APP(h, app(g, app(app(cons, x), y)))
APP(h, app(app(cons, x), y)) -> APP(g, app(app(cons, x), y))

Furthermore, R contains three SCCs.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering
       →DP Problem 2
AFS
       →DP Problem 3
AFS


Dependency Pair:

APP(f, app(s, x)) -> APP(f, x)


Rules:


app(f, app(s, x)) -> app(f, x)
app(g, app(app(cons, 0), y)) -> app(g, y)
app(g, app(app(cons, app(s, x)), y)) -> app(s, x)
app(h, app(app(cons, x), y)) -> app(h, app(g, app(app(cons, x), y)))


Strategy:

innermost




The following dependency pair can be strictly oriented:

APP(f, app(s, x)) -> APP(f, x)


There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
trivial

resulting in one new DP problem.
Used Argument Filtering System:
APP(x1, x2) -> APP(x1, x2)
app(x1, x2) -> app(x1, x2)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 4
Dependency Graph
       →DP Problem 2
AFS
       →DP Problem 3
AFS


Dependency Pair:


Rules:


app(f, app(s, x)) -> app(f, x)
app(g, app(app(cons, 0), y)) -> app(g, y)
app(g, app(app(cons, app(s, x)), y)) -> app(s, x)
app(h, app(app(cons, x), y)) -> app(h, app(g, app(app(cons, x), y)))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
Argument Filtering and Ordering
       →DP Problem 3
AFS


Dependency Pair:

APP(g, app(app(cons, 0), y)) -> APP(g, y)


Rules:


app(f, app(s, x)) -> app(f, x)
app(g, app(app(cons, 0), y)) -> app(g, y)
app(g, app(app(cons, app(s, x)), y)) -> app(s, x)
app(h, app(app(cons, x), y)) -> app(h, app(g, app(app(cons, x), y)))


Strategy:

innermost




The following dependency pair can be strictly oriented:

APP(g, app(app(cons, 0), y)) -> APP(g, y)


There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
trivial

resulting in one new DP problem.
Used Argument Filtering System:
APP(x1, x2) -> APP(x1, x2)
app(x1, x2) -> app(x1, x2)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
           →DP Problem 5
Dependency Graph
       →DP Problem 3
AFS


Dependency Pair:


Rules:


app(f, app(s, x)) -> app(f, x)
app(g, app(app(cons, 0), y)) -> app(g, y)
app(g, app(app(cons, app(s, x)), y)) -> app(s, x)
app(h, app(app(cons, x), y)) -> app(h, app(g, app(app(cons, x), y)))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
Argument Filtering and Ordering


Dependency Pair:

APP(h, app(app(cons, x), y)) -> APP(h, app(g, app(app(cons, x), y)))


Rules:


app(f, app(s, x)) -> app(f, x)
app(g, app(app(cons, 0), y)) -> app(g, y)
app(g, app(app(cons, app(s, x)), y)) -> app(s, x)
app(h, app(app(cons, x), y)) -> app(h, app(g, app(app(cons, x), y)))


Strategy:

innermost




The following dependency pair can be strictly oriented:

APP(h, app(app(cons, x), y)) -> APP(h, app(g, app(app(cons, x), y)))


The following usable rules for innermost w.r.t. to the AFS can be oriented:

app(f, app(s, x)) -> app(f, x)
app(g, app(app(cons, 0), y)) -> app(g, y)
app(g, app(app(cons, app(s, x)), y)) -> app(s, x)
app(h, app(app(cons, x), y)) -> app(h, app(g, app(app(cons, x), y)))


Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
cons > {g, s}

resulting in one new DP problem.
Used Argument Filtering System:
APP(x1, x2) -> APP(x1, x2)
app(x1, x2) -> x1


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
           →DP Problem 6
Dependency Graph


Dependency Pair:


Rules:


app(f, app(s, x)) -> app(f, x)
app(g, app(app(cons, 0), y)) -> app(g, y)
app(g, app(app(cons, app(s, x)), y)) -> app(s, x)
app(h, app(app(cons, x), y)) -> app(h, app(g, app(app(cons, x), y)))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:00 minutes