R
↳Dependency Pair Analysis
APP(app(minus, app(s, x)), app(s, y)) -> APP(app(minus, x), y)
APP(app(minus, app(s, x)), app(s, y)) -> APP(minus, x)
APP(app(quot, app(s, x)), app(s, y)) -> APP(s, app(app(quot, app(app(minus, x), y)), app(s, y)))
APP(app(quot, app(s, x)), app(s, y)) -> APP(app(quot, app(app(minus, x), y)), app(s, y))
APP(app(quot, app(s, x)), app(s, y)) -> APP(quot, app(app(minus, x), y))
APP(app(quot, app(s, x)), app(s, y)) -> APP(app(minus, x), y)
APP(app(quot, app(s, x)), app(s, y)) -> APP(minus, x)
APP(app(plus, app(s, x)), y) -> APP(s, app(app(plus, x), y))
APP(app(plus, app(s, x)), y) -> APP(app(plus, x), y)
APP(app(plus, app(s, x)), y) -> APP(plus, x)
APP(app(plus, app(app(minus, x), app(s, 0))), app(app(minus, y), app(s, app(s, z)))) -> APP(app(plus, app(app(minus, y), app(s, app(s, z)))), app(app(minus, x), app(s, 0)))
APP(app(plus, app(app(minus, x), app(s, 0))), app(app(minus, y), app(s, app(s, z)))) -> APP(plus, app(app(minus, y), app(s, app(s, z))))
APP(app(plus, app(app(plus, x), app(s, 0))), app(app(plus, y), app(s, app(s, z)))) -> APP(app(plus, app(app(plus, y), app(s, app(s, z)))), app(app(plus, x), app(s, 0)))
APP(app(plus, app(app(plus, x), app(s, 0))), app(app(plus, y), app(s, app(s, z)))) -> APP(plus, app(app(plus, y), app(s, app(s, z))))
R
↳DPs
→DP Problem 1
↳Narrowing Transformation
APP(app(plus, app(app(plus, x), app(s, 0))), app(app(plus, y), app(s, app(s, z)))) -> APP(app(plus, app(app(plus, y), app(s, app(s, z)))), app(app(plus, x), app(s, 0)))
APP(app(plus, app(app(minus, x), app(s, 0))), app(app(minus, y), app(s, app(s, z)))) -> APP(app(plus, app(app(minus, y), app(s, app(s, z)))), app(app(minus, x), app(s, 0)))
APP(app(plus, app(s, x)), y) -> APP(app(plus, x), y)
APP(app(quot, app(s, x)), app(s, y)) -> APP(app(minus, x), y)
APP(app(quot, app(s, x)), app(s, y)) -> APP(app(quot, app(app(minus, x), y)), app(s, y))
APP(app(minus, app(s, x)), app(s, y)) -> APP(app(minus, x), y)
app(app(minus, x), 0) -> x
app(app(minus, app(s, x)), app(s, y)) -> app(app(minus, x), y)
app(app(quot, 0), app(s, y)) -> 0
app(app(quot, app(s, x)), app(s, y)) -> app(s, app(app(quot, app(app(minus, x), y)), app(s, y)))
app(app(plus, 0), y) -> y
app(app(plus, app(s, x)), y) -> app(s, app(app(plus, x), y))
app(app(plus, app(app(minus, x), app(s, 0))), app(app(minus, y), app(s, app(s, z)))) -> app(app(plus, app(app(minus, y), app(s, app(s, z)))), app(app(minus, x), app(s, 0)))
app(app(plus, app(app(plus, x), app(s, 0))), app(app(plus, y), app(s, app(s, z)))) -> app(app(plus, app(app(plus, y), app(s, app(s, z)))), app(app(plus, x), app(s, 0)))
innermost
two new Dependency Pairs are created:
APP(app(quot, app(s, x)), app(s, y)) -> APP(app(quot, app(app(minus, x), y)), app(s, y))
APP(app(quot, app(s, x'')), app(s, 0)) -> APP(app(quot, x''), app(s, 0))
APP(app(quot, app(s, app(s, x''))), app(s, app(s, y''))) -> APP(app(quot, app(app(minus, x''), y'')), app(s, app(s, y'')))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Narrowing Transformation
APP(app(quot, app(s, app(s, x''))), app(s, app(s, y''))) -> APP(app(quot, app(app(minus, x''), y'')), app(s, app(s, y'')))
APP(app(quot, app(s, x'')), app(s, 0)) -> APP(app(quot, x''), app(s, 0))
APP(app(plus, app(app(minus, x), app(s, 0))), app(app(minus, y), app(s, app(s, z)))) -> APP(app(plus, app(app(minus, y), app(s, app(s, z)))), app(app(minus, x), app(s, 0)))
APP(app(quot, app(s, x)), app(s, y)) -> APP(app(minus, x), y)
APP(app(minus, app(s, x)), app(s, y)) -> APP(app(minus, x), y)
APP(app(plus, app(s, x)), y) -> APP(app(plus, x), y)
APP(app(plus, app(app(plus, x), app(s, 0))), app(app(plus, y), app(s, app(s, z)))) -> APP(app(plus, app(app(plus, y), app(s, app(s, z)))), app(app(plus, x), app(s, 0)))
app(app(minus, x), 0) -> x
app(app(minus, app(s, x)), app(s, y)) -> app(app(minus, x), y)
app(app(quot, 0), app(s, y)) -> 0
app(app(quot, app(s, x)), app(s, y)) -> app(s, app(app(quot, app(app(minus, x), y)), app(s, y)))
app(app(plus, 0), y) -> y
app(app(plus, app(s, x)), y) -> app(s, app(app(plus, x), y))
app(app(plus, app(app(minus, x), app(s, 0))), app(app(minus, y), app(s, app(s, z)))) -> app(app(plus, app(app(minus, y), app(s, app(s, z)))), app(app(minus, x), app(s, 0)))
app(app(plus, app(app(plus, x), app(s, 0))), app(app(plus, y), app(s, app(s, z)))) -> app(app(plus, app(app(plus, y), app(s, app(s, z)))), app(app(plus, x), app(s, 0)))
innermost
no new Dependency Pairs are created.
APP(app(plus, app(app(minus, x), app(s, 0))), app(app(minus, y), app(s, app(s, z)))) -> APP(app(plus, app(app(minus, y), app(s, app(s, z)))), app(app(minus, x), app(s, 0)))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 3
↳Narrowing Transformation
APP(app(quot, app(s, x'')), app(s, 0)) -> APP(app(quot, x''), app(s, 0))
APP(app(plus, app(app(plus, x), app(s, 0))), app(app(plus, y), app(s, app(s, z)))) -> APP(app(plus, app(app(plus, y), app(s, app(s, z)))), app(app(plus, x), app(s, 0)))
APP(app(plus, app(s, x)), y) -> APP(app(plus, x), y)
APP(app(quot, app(s, x)), app(s, y)) -> APP(app(minus, x), y)
APP(app(minus, app(s, x)), app(s, y)) -> APP(app(minus, x), y)
APP(app(quot, app(s, app(s, x''))), app(s, app(s, y''))) -> APP(app(quot, app(app(minus, x''), y'')), app(s, app(s, y'')))
app(app(minus, x), 0) -> x
app(app(minus, app(s, x)), app(s, y)) -> app(app(minus, x), y)
app(app(quot, 0), app(s, y)) -> 0
app(app(quot, app(s, x)), app(s, y)) -> app(s, app(app(quot, app(app(minus, x), y)), app(s, y)))
app(app(plus, 0), y) -> y
app(app(plus, app(s, x)), y) -> app(s, app(app(plus, x), y))
app(app(plus, app(app(minus, x), app(s, 0))), app(app(minus, y), app(s, app(s, z)))) -> app(app(plus, app(app(minus, y), app(s, app(s, z)))), app(app(minus, x), app(s, 0)))
app(app(plus, app(app(plus, x), app(s, 0))), app(app(plus, y), app(s, app(s, z)))) -> app(app(plus, app(app(plus, y), app(s, app(s, z)))), app(app(plus, x), app(s, 0)))
innermost
no new Dependency Pairs are created.
APP(app(plus, app(app(plus, x), app(s, 0))), app(app(plus, y), app(s, app(s, z)))) -> APP(app(plus, app(app(plus, y), app(s, app(s, z)))), app(app(plus, x), app(s, 0)))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 4
↳Narrowing Transformation
APP(app(quot, app(s, app(s, x''))), app(s, app(s, y''))) -> APP(app(quot, app(app(minus, x''), y'')), app(s, app(s, y'')))
APP(app(plus, app(s, x)), y) -> APP(app(plus, x), y)
APP(app(quot, app(s, x)), app(s, y)) -> APP(app(minus, x), y)
APP(app(minus, app(s, x)), app(s, y)) -> APP(app(minus, x), y)
APP(app(quot, app(s, x'')), app(s, 0)) -> APP(app(quot, x''), app(s, 0))
app(app(minus, x), 0) -> x
app(app(minus, app(s, x)), app(s, y)) -> app(app(minus, x), y)
app(app(quot, 0), app(s, y)) -> 0
app(app(quot, app(s, x)), app(s, y)) -> app(s, app(app(quot, app(app(minus, x), y)), app(s, y)))
app(app(plus, 0), y) -> y
app(app(plus, app(s, x)), y) -> app(s, app(app(plus, x), y))
app(app(plus, app(app(minus, x), app(s, 0))), app(app(minus, y), app(s, app(s, z)))) -> app(app(plus, app(app(minus, y), app(s, app(s, z)))), app(app(minus, x), app(s, 0)))
app(app(plus, app(app(plus, x), app(s, 0))), app(app(plus, y), app(s, app(s, z)))) -> app(app(plus, app(app(plus, y), app(s, app(s, z)))), app(app(plus, x), app(s, 0)))
innermost
two new Dependency Pairs are created:
APP(app(quot, app(s, app(s, x''))), app(s, app(s, y''))) -> APP(app(quot, app(app(minus, x''), y'')), app(s, app(s, y'')))
APP(app(quot, app(s, app(s, x'''))), app(s, app(s, 0))) -> APP(app(quot, x'''), app(s, app(s, 0)))
APP(app(quot, app(s, app(s, app(s, x')))), app(s, app(s, app(s, y')))) -> APP(app(quot, app(app(minus, x'), y')), app(s, app(s, app(s, y'))))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 5
↳Narrowing Transformation
APP(app(quot, app(s, app(s, app(s, x')))), app(s, app(s, app(s, y')))) -> APP(app(quot, app(app(minus, x'), y')), app(s, app(s, app(s, y'))))
APP(app(quot, app(s, app(s, x'''))), app(s, app(s, 0))) -> APP(app(quot, x'''), app(s, app(s, 0)))
APP(app(quot, app(s, x'')), app(s, 0)) -> APP(app(quot, x''), app(s, 0))
APP(app(quot, app(s, x)), app(s, y)) -> APP(app(minus, x), y)
APP(app(minus, app(s, x)), app(s, y)) -> APP(app(minus, x), y)
APP(app(plus, app(s, x)), y) -> APP(app(plus, x), y)
app(app(minus, x), 0) -> x
app(app(minus, app(s, x)), app(s, y)) -> app(app(minus, x), y)
app(app(quot, 0), app(s, y)) -> 0
app(app(quot, app(s, x)), app(s, y)) -> app(s, app(app(quot, app(app(minus, x), y)), app(s, y)))
app(app(plus, 0), y) -> y
app(app(plus, app(s, x)), y) -> app(s, app(app(plus, x), y))
app(app(plus, app(app(minus, x), app(s, 0))), app(app(minus, y), app(s, app(s, z)))) -> app(app(plus, app(app(minus, y), app(s, app(s, z)))), app(app(minus, x), app(s, 0)))
app(app(plus, app(app(plus, x), app(s, 0))), app(app(plus, y), app(s, app(s, z)))) -> app(app(plus, app(app(plus, y), app(s, app(s, z)))), app(app(plus, x), app(s, 0)))
innermost
two new Dependency Pairs are created:
APP(app(quot, app(s, app(s, app(s, x')))), app(s, app(s, app(s, y')))) -> APP(app(quot, app(app(minus, x'), y')), app(s, app(s, app(s, y'))))
APP(app(quot, app(s, app(s, app(s, x'')))), app(s, app(s, app(s, 0)))) -> APP(app(quot, x''), app(s, app(s, app(s, 0))))
APP(app(quot, app(s, app(s, app(s, app(s, x''))))), app(s, app(s, app(s, app(s, y''))))) -> APP(app(quot, app(app(minus, x''), y'')), app(s, app(s, app(s, app(s, y'')))))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 6
↳Narrowing Transformation
APP(app(quot, app(s, app(s, app(s, app(s, x''))))), app(s, app(s, app(s, app(s, y''))))) -> APP(app(quot, app(app(minus, x''), y'')), app(s, app(s, app(s, app(s, y'')))))
APP(app(quot, app(s, app(s, app(s, x'')))), app(s, app(s, app(s, 0)))) -> APP(app(quot, x''), app(s, app(s, app(s, 0))))
APP(app(quot, app(s, x'')), app(s, 0)) -> APP(app(quot, x''), app(s, 0))
APP(app(plus, app(s, x)), y) -> APP(app(plus, x), y)
APP(app(quot, app(s, x)), app(s, y)) -> APP(app(minus, x), y)
APP(app(minus, app(s, x)), app(s, y)) -> APP(app(minus, x), y)
APP(app(quot, app(s, app(s, x'''))), app(s, app(s, 0))) -> APP(app(quot, x'''), app(s, app(s, 0)))
app(app(minus, x), 0) -> x
app(app(minus, app(s, x)), app(s, y)) -> app(app(minus, x), y)
app(app(quot, 0), app(s, y)) -> 0
app(app(quot, app(s, x)), app(s, y)) -> app(s, app(app(quot, app(app(minus, x), y)), app(s, y)))
app(app(plus, 0), y) -> y
app(app(plus, app(s, x)), y) -> app(s, app(app(plus, x), y))
app(app(plus, app(app(minus, x), app(s, 0))), app(app(minus, y), app(s, app(s, z)))) -> app(app(plus, app(app(minus, y), app(s, app(s, z)))), app(app(minus, x), app(s, 0)))
app(app(plus, app(app(plus, x), app(s, 0))), app(app(plus, y), app(s, app(s, z)))) -> app(app(plus, app(app(plus, y), app(s, app(s, z)))), app(app(plus, x), app(s, 0)))
innermost
two new Dependency Pairs are created:
APP(app(quot, app(s, app(s, app(s, app(s, x''))))), app(s, app(s, app(s, app(s, y''))))) -> APP(app(quot, app(app(minus, x''), y'')), app(s, app(s, app(s, app(s, y'')))))
APP(app(quot, app(s, app(s, app(s, app(s, x'''))))), app(s, app(s, app(s, app(s, 0))))) -> APP(app(quot, x'''), app(s, app(s, app(s, app(s, 0)))))
APP(app(quot, app(s, app(s, app(s, app(s, app(s, x')))))), app(s, app(s, app(s, app(s, app(s, y')))))) -> APP(app(quot, app(app(minus, x'), y')), app(s, app(s, app(s, app(s, app(s, y'))))))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 7
↳Narrowing Transformation
APP(app(quot, app(s, app(s, app(s, app(s, app(s, x')))))), app(s, app(s, app(s, app(s, app(s, y')))))) -> APP(app(quot, app(app(minus, x'), y')), app(s, app(s, app(s, app(s, app(s, y'))))))
APP(app(quot, app(s, app(s, app(s, app(s, x'''))))), app(s, app(s, app(s, app(s, 0))))) -> APP(app(quot, x'''), app(s, app(s, app(s, app(s, 0)))))
APP(app(quot, app(s, app(s, x'''))), app(s, app(s, 0))) -> APP(app(quot, x'''), app(s, app(s, 0)))
APP(app(quot, app(s, x'')), app(s, 0)) -> APP(app(quot, x''), app(s, 0))
APP(app(plus, app(s, x)), y) -> APP(app(plus, x), y)
APP(app(quot, app(s, x)), app(s, y)) -> APP(app(minus, x), y)
APP(app(minus, app(s, x)), app(s, y)) -> APP(app(minus, x), y)
APP(app(quot, app(s, app(s, app(s, x'')))), app(s, app(s, app(s, 0)))) -> APP(app(quot, x''), app(s, app(s, app(s, 0))))
app(app(minus, x), 0) -> x
app(app(minus, app(s, x)), app(s, y)) -> app(app(minus, x), y)
app(app(quot, 0), app(s, y)) -> 0
app(app(quot, app(s, x)), app(s, y)) -> app(s, app(app(quot, app(app(minus, x), y)), app(s, y)))
app(app(plus, 0), y) -> y
app(app(plus, app(s, x)), y) -> app(s, app(app(plus, x), y))
app(app(plus, app(app(minus, x), app(s, 0))), app(app(minus, y), app(s, app(s, z)))) -> app(app(plus, app(app(minus, y), app(s, app(s, z)))), app(app(minus, x), app(s, 0)))
app(app(plus, app(app(plus, x), app(s, 0))), app(app(plus, y), app(s, app(s, z)))) -> app(app(plus, app(app(plus, y), app(s, app(s, z)))), app(app(plus, x), app(s, 0)))
innermost
two new Dependency Pairs are created:
APP(app(quot, app(s, app(s, app(s, app(s, app(s, x')))))), app(s, app(s, app(s, app(s, app(s, y')))))) -> APP(app(quot, app(app(minus, x'), y')), app(s, app(s, app(s, app(s, app(s, y'))))))
APP(app(quot, app(s, app(s, app(s, app(s, app(s, x'')))))), app(s, app(s, app(s, app(s, app(s, 0)))))) -> APP(app(quot, x''), app(s, app(s, app(s, app(s, app(s, 0))))))
APP(app(quot, app(s, app(s, app(s, app(s, app(s, app(s, x''))))))), app(s, app(s, app(s, app(s, app(s, app(s, y''))))))) -> APP(app(quot, app(app(minus, x''), y'')), app(s, app(s, app(s, app(s, app(s, app(s, y'')))))))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 8
↳Remaining Obligation(s)
APP(app(quot, app(s, app(s, app(s, app(s, app(s, app(s, x''))))))), app(s, app(s, app(s, app(s, app(s, app(s, y''))))))) -> APP(app(quot, app(app(minus, x''), y'')), app(s, app(s, app(s, app(s, app(s, app(s, y'')))))))
APP(app(quot, app(s, app(s, app(s, app(s, app(s, x'')))))), app(s, app(s, app(s, app(s, app(s, 0)))))) -> APP(app(quot, x''), app(s, app(s, app(s, app(s, app(s, 0))))))
APP(app(quot, app(s, app(s, app(s, x'')))), app(s, app(s, app(s, 0)))) -> APP(app(quot, x''), app(s, app(s, app(s, 0))))
APP(app(quot, app(s, app(s, x'''))), app(s, app(s, 0))) -> APP(app(quot, x'''), app(s, app(s, 0)))
APP(app(quot, app(s, x'')), app(s, 0)) -> APP(app(quot, x''), app(s, 0))
APP(app(plus, app(s, x)), y) -> APP(app(plus, x), y)
APP(app(quot, app(s, x)), app(s, y)) -> APP(app(minus, x), y)
APP(app(minus, app(s, x)), app(s, y)) -> APP(app(minus, x), y)
APP(app(quot, app(s, app(s, app(s, app(s, x'''))))), app(s, app(s, app(s, app(s, 0))))) -> APP(app(quot, x'''), app(s, app(s, app(s, app(s, 0)))))
app(app(minus, x), 0) -> x
app(app(minus, app(s, x)), app(s, y)) -> app(app(minus, x), y)
app(app(quot, 0), app(s, y)) -> 0
app(app(quot, app(s, x)), app(s, y)) -> app(s, app(app(quot, app(app(minus, x), y)), app(s, y)))
app(app(plus, 0), y) -> y
app(app(plus, app(s, x)), y) -> app(s, app(app(plus, x), y))
app(app(plus, app(app(minus, x), app(s, 0))), app(app(minus, y), app(s, app(s, z)))) -> app(app(plus, app(app(minus, y), app(s, app(s, z)))), app(app(minus, x), app(s, 0)))
app(app(plus, app(app(plus, x), app(s, 0))), app(app(plus, y), app(s, app(s, z)))) -> app(app(plus, app(app(plus, y), app(s, app(s, z)))), app(app(plus, x), app(s, 0)))
innermost