R
↳Dependency Pair Analysis
APP(rev, app(app(cons, x), l)) -> APP(app(cons, app(app(rev1, x), l)), app(app(rev2, x), l))
APP(rev, app(app(cons, x), l)) -> APP(cons, app(app(rev1, x), l))
APP(rev, app(app(cons, x), l)) -> APP(app(rev1, x), l)
APP(rev, app(app(cons, x), l)) -> APP(rev1, x)
APP(rev, app(app(cons, x), l)) -> APP(app(rev2, x), l)
APP(rev, app(app(cons, x), l)) -> APP(rev2, x)
APP(app(rev1, x), app(app(cons, y), l)) -> APP(app(rev1, y), l)
APP(app(rev1, x), app(app(cons, y), l)) -> APP(rev1, y)
APP(app(rev2, x), app(app(cons, y), l)) -> APP(rev, app(app(cons, x), app(app(rev2, y), l)))
APP(app(rev2, x), app(app(cons, y), l)) -> APP(app(cons, x), app(app(rev2, y), l))
APP(app(rev2, x), app(app(cons, y), l)) -> APP(cons, x)
APP(app(rev2, x), app(app(cons, y), l)) -> APP(app(rev2, y), l)
APP(app(rev2, x), app(app(cons, y), l)) -> APP(rev2, y)
R
↳DPs
→DP Problem 1
↳Narrowing Transformation
APP(app(rev2, x), app(app(cons, y), l)) -> APP(app(rev2, y), l)
APP(app(rev2, x), app(app(cons, y), l)) -> APP(app(cons, x), app(app(rev2, y), l))
APP(app(rev2, x), app(app(cons, y), l)) -> APP(rev, app(app(cons, x), app(app(rev2, y), l)))
APP(app(rev1, x), app(app(cons, y), l)) -> APP(app(rev1, y), l)
APP(rev, app(app(cons, x), l)) -> APP(app(rev2, x), l)
APP(rev, app(app(cons, x), l)) -> APP(app(rev1, x), l)
APP(rev, app(app(cons, x), l)) -> APP(app(cons, app(app(rev1, x), l)), app(app(rev2, x), l))
app(rev, nil) -> nil
app(rev, app(app(cons, x), l)) -> app(app(cons, app(app(rev1, x), l)), app(app(rev2, x), l))
app(app(rev1, 0), nil) -> 0
app(app(rev1, app(s, x)), nil) -> app(s, x)
app(app(rev1, x), app(app(cons, y), l)) -> app(app(rev1, y), l)
app(app(rev2, x), nil) -> nil
app(app(rev2, x), app(app(cons, y), l)) -> app(rev, app(app(cons, x), app(app(rev2, y), l)))
innermost
five new Dependency Pairs are created:
APP(rev, app(app(cons, x), l)) -> APP(app(cons, app(app(rev1, x), l)), app(app(rev2, x), l))
APP(rev, app(app(cons, 0), nil)) -> APP(app(cons, 0), app(app(rev2, 0), nil))
APP(rev, app(app(cons, app(s, x'')), nil)) -> APP(app(cons, app(s, x'')), app(app(rev2, app(s, x'')), nil))
APP(rev, app(app(cons, x''), app(app(cons, y'), l''))) -> APP(app(cons, app(app(rev1, y'), l'')), app(app(rev2, x''), app(app(cons, y'), l'')))
APP(rev, app(app(cons, x''), nil)) -> APP(app(cons, app(app(rev1, x''), nil)), nil)
APP(rev, app(app(cons, x''), app(app(cons, y'), l''))) -> APP(app(cons, app(app(rev1, x''), app(app(cons, y'), l''))), app(rev, app(app(cons, x''), app(app(rev2, y'), l''))))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Rewriting Transformation
APP(rev, app(app(cons, x''), app(app(cons, y'), l''))) -> APP(app(cons, app(app(rev1, x''), app(app(cons, y'), l''))), app(rev, app(app(cons, x''), app(app(rev2, y'), l''))))
APP(app(rev2, x), app(app(cons, y), l)) -> APP(app(cons, x), app(app(rev2, y), l))
APP(rev, app(app(cons, x''), app(app(cons, y'), l''))) -> APP(app(cons, app(app(rev1, y'), l'')), app(app(rev2, x''), app(app(cons, y'), l'')))
APP(app(rev2, x), app(app(cons, y), l)) -> APP(rev, app(app(cons, x), app(app(rev2, y), l)))
APP(app(rev1, x), app(app(cons, y), l)) -> APP(app(rev1, y), l)
APP(rev, app(app(cons, x), l)) -> APP(app(rev2, x), l)
APP(rev, app(app(cons, x), l)) -> APP(app(rev1, x), l)
APP(app(rev2, x), app(app(cons, y), l)) -> APP(app(rev2, y), l)
app(rev, nil) -> nil
app(rev, app(app(cons, x), l)) -> app(app(cons, app(app(rev1, x), l)), app(app(rev2, x), l))
app(app(rev1, 0), nil) -> 0
app(app(rev1, app(s, x)), nil) -> app(s, x)
app(app(rev1, x), app(app(cons, y), l)) -> app(app(rev1, y), l)
app(app(rev2, x), nil) -> nil
app(app(rev2, x), app(app(cons, y), l)) -> app(rev, app(app(cons, x), app(app(rev2, y), l)))
innermost
one new Dependency Pair is created:
APP(rev, app(app(cons, x''), app(app(cons, y'), l''))) -> APP(app(cons, app(app(rev1, y'), l'')), app(app(rev2, x''), app(app(cons, y'), l'')))
APP(rev, app(app(cons, x''), app(app(cons, y'), l''))) -> APP(app(cons, app(app(rev1, y'), l'')), app(rev, app(app(cons, x''), app(app(rev2, y'), l''))))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Rw
...
→DP Problem 3
↳Rewriting Transformation
APP(app(rev2, x), app(app(cons, y), l)) -> APP(app(rev2, y), l)
APP(app(rev2, x), app(app(cons, y), l)) -> APP(app(cons, x), app(app(rev2, y), l))
APP(rev, app(app(cons, x''), app(app(cons, y'), l''))) -> APP(app(cons, app(app(rev1, y'), l'')), app(rev, app(app(cons, x''), app(app(rev2, y'), l''))))
APP(app(rev2, x), app(app(cons, y), l)) -> APP(rev, app(app(cons, x), app(app(rev2, y), l)))
APP(app(rev1, x), app(app(cons, y), l)) -> APP(app(rev1, y), l)
APP(rev, app(app(cons, x), l)) -> APP(app(rev2, x), l)
APP(rev, app(app(cons, x), l)) -> APP(app(rev1, x), l)
APP(rev, app(app(cons, x''), app(app(cons, y'), l''))) -> APP(app(cons, app(app(rev1, x''), app(app(cons, y'), l''))), app(rev, app(app(cons, x''), app(app(rev2, y'), l''))))
app(rev, nil) -> nil
app(rev, app(app(cons, x), l)) -> app(app(cons, app(app(rev1, x), l)), app(app(rev2, x), l))
app(app(rev1, 0), nil) -> 0
app(app(rev1, app(s, x)), nil) -> app(s, x)
app(app(rev1, x), app(app(cons, y), l)) -> app(app(rev1, y), l)
app(app(rev2, x), nil) -> nil
app(app(rev2, x), app(app(cons, y), l)) -> app(rev, app(app(cons, x), app(app(rev2, y), l)))
innermost
one new Dependency Pair is created:
APP(rev, app(app(cons, x''), app(app(cons, y'), l''))) -> APP(app(cons, app(app(rev1, x''), app(app(cons, y'), l''))), app(rev, app(app(cons, x''), app(app(rev2, y'), l''))))
APP(rev, app(app(cons, x''), app(app(cons, y'), l''))) -> APP(app(cons, app(app(rev1, y'), l'')), app(rev, app(app(cons, x''), app(app(rev2, y'), l''))))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Rw
...
→DP Problem 4
↳Rewriting Transformation
APP(rev, app(app(cons, x''), app(app(cons, y'), l''))) -> APP(app(cons, app(app(rev1, y'), l'')), app(rev, app(app(cons, x''), app(app(rev2, y'), l''))))
APP(app(rev2, x), app(app(cons, y), l)) -> APP(app(cons, x), app(app(rev2, y), l))
APP(rev, app(app(cons, x''), app(app(cons, y'), l''))) -> APP(app(cons, app(app(rev1, y'), l'')), app(rev, app(app(cons, x''), app(app(rev2, y'), l''))))
APP(app(rev2, x), app(app(cons, y), l)) -> APP(rev, app(app(cons, x), app(app(rev2, y), l)))
APP(app(rev1, x), app(app(cons, y), l)) -> APP(app(rev1, y), l)
APP(rev, app(app(cons, x), l)) -> APP(app(rev2, x), l)
APP(rev, app(app(cons, x), l)) -> APP(app(rev1, x), l)
APP(app(rev2, x), app(app(cons, y), l)) -> APP(app(rev2, y), l)
app(rev, nil) -> nil
app(rev, app(app(cons, x), l)) -> app(app(cons, app(app(rev1, x), l)), app(app(rev2, x), l))
app(app(rev1, 0), nil) -> 0
app(app(rev1, app(s, x)), nil) -> app(s, x)
app(app(rev1, x), app(app(cons, y), l)) -> app(app(rev1, y), l)
app(app(rev2, x), nil) -> nil
app(app(rev2, x), app(app(cons, y), l)) -> app(rev, app(app(cons, x), app(app(rev2, y), l)))
innermost
one new Dependency Pair is created:
APP(rev, app(app(cons, x''), app(app(cons, y'), l''))) -> APP(app(cons, app(app(rev1, y'), l'')), app(rev, app(app(cons, x''), app(app(rev2, y'), l''))))
APP(rev, app(app(cons, x''), app(app(cons, y'), l''))) -> APP(app(cons, app(app(rev1, y'), l'')), app(app(cons, app(app(rev1, x''), app(app(rev2, y'), l''))), app(app(rev2, x''), app(app(rev2, y'), l''))))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Rw
...
→DP Problem 5
↳Rewriting Transformation
APP(app(rev2, x), app(app(cons, y), l)) -> APP(app(rev2, y), l)
APP(app(rev2, x), app(app(cons, y), l)) -> APP(app(cons, x), app(app(rev2, y), l))
APP(rev, app(app(cons, x''), app(app(cons, y'), l''))) -> APP(app(cons, app(app(rev1, y'), l'')), app(app(cons, app(app(rev1, x''), app(app(rev2, y'), l''))), app(app(rev2, x''), app(app(rev2, y'), l''))))
APP(app(rev2, x), app(app(cons, y), l)) -> APP(rev, app(app(cons, x), app(app(rev2, y), l)))
APP(app(rev1, x), app(app(cons, y), l)) -> APP(app(rev1, y), l)
APP(rev, app(app(cons, x), l)) -> APP(app(rev2, x), l)
APP(rev, app(app(cons, x), l)) -> APP(app(rev1, x), l)
APP(rev, app(app(cons, x''), app(app(cons, y'), l''))) -> APP(app(cons, app(app(rev1, y'), l'')), app(rev, app(app(cons, x''), app(app(rev2, y'), l''))))
app(rev, nil) -> nil
app(rev, app(app(cons, x), l)) -> app(app(cons, app(app(rev1, x), l)), app(app(rev2, x), l))
app(app(rev1, 0), nil) -> 0
app(app(rev1, app(s, x)), nil) -> app(s, x)
app(app(rev1, x), app(app(cons, y), l)) -> app(app(rev1, y), l)
app(app(rev2, x), nil) -> nil
app(app(rev2, x), app(app(cons, y), l)) -> app(rev, app(app(cons, x), app(app(rev2, y), l)))
innermost
one new Dependency Pair is created:
APP(rev, app(app(cons, x''), app(app(cons, y'), l''))) -> APP(app(cons, app(app(rev1, y'), l'')), app(rev, app(app(cons, x''), app(app(rev2, y'), l''))))
APP(rev, app(app(cons, x''), app(app(cons, y'), l''))) -> APP(app(cons, app(app(rev1, y'), l'')), app(app(cons, app(app(rev1, x''), app(app(rev2, y'), l''))), app(app(rev2, x''), app(app(rev2, y'), l''))))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Rw
...
→DP Problem 6
↳Narrowing Transformation
APP(rev, app(app(cons, x''), app(app(cons, y'), l''))) -> APP(app(cons, app(app(rev1, y'), l'')), app(app(cons, app(app(rev1, x''), app(app(rev2, y'), l''))), app(app(rev2, x''), app(app(rev2, y'), l''))))
APP(app(rev2, x), app(app(cons, y), l)) -> APP(app(cons, x), app(app(rev2, y), l))
APP(rev, app(app(cons, x''), app(app(cons, y'), l''))) -> APP(app(cons, app(app(rev1, y'), l'')), app(app(cons, app(app(rev1, x''), app(app(rev2, y'), l''))), app(app(rev2, x''), app(app(rev2, y'), l''))))
APP(app(rev2, x), app(app(cons, y), l)) -> APP(rev, app(app(cons, x), app(app(rev2, y), l)))
APP(app(rev1, x), app(app(cons, y), l)) -> APP(app(rev1, y), l)
APP(rev, app(app(cons, x), l)) -> APP(app(rev2, x), l)
APP(rev, app(app(cons, x), l)) -> APP(app(rev1, x), l)
APP(app(rev2, x), app(app(cons, y), l)) -> APP(app(rev2, y), l)
app(rev, nil) -> nil
app(rev, app(app(cons, x), l)) -> app(app(cons, app(app(rev1, x), l)), app(app(rev2, x), l))
app(app(rev1, 0), nil) -> 0
app(app(rev1, app(s, x)), nil) -> app(s, x)
app(app(rev1, x), app(app(cons, y), l)) -> app(app(rev1, y), l)
app(app(rev2, x), nil) -> nil
app(app(rev2, x), app(app(cons, y), l)) -> app(rev, app(app(cons, x), app(app(rev2, y), l)))
innermost
two new Dependency Pairs are created:
APP(app(rev2, x), app(app(cons, y), l)) -> APP(app(cons, x), app(app(rev2, y), l))
APP(app(rev2, x), app(app(cons, y'), nil)) -> APP(app(cons, x), nil)
APP(app(rev2, x), app(app(cons, y0), app(app(cons, y''), l''))) -> APP(app(cons, x), app(rev, app(app(cons, y0), app(app(rev2, y''), l''))))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Rw
...
→DP Problem 7
↳Rewriting Transformation
APP(app(rev2, x), app(app(cons, y0), app(app(cons, y''), l''))) -> APP(app(cons, x), app(rev, app(app(cons, y0), app(app(rev2, y''), l''))))
APP(app(rev2, x), app(app(cons, y), l)) -> APP(app(rev2, y), l)
APP(rev, app(app(cons, x''), app(app(cons, y'), l''))) -> APP(app(cons, app(app(rev1, y'), l'')), app(app(cons, app(app(rev1, x''), app(app(rev2, y'), l''))), app(app(rev2, x''), app(app(rev2, y'), l''))))
APP(app(rev2, x), app(app(cons, y), l)) -> APP(rev, app(app(cons, x), app(app(rev2, y), l)))
APP(app(rev1, x), app(app(cons, y), l)) -> APP(app(rev1, y), l)
APP(rev, app(app(cons, x), l)) -> APP(app(rev2, x), l)
APP(rev, app(app(cons, x), l)) -> APP(app(rev1, x), l)
APP(rev, app(app(cons, x''), app(app(cons, y'), l''))) -> APP(app(cons, app(app(rev1, y'), l'')), app(app(cons, app(app(rev1, x''), app(app(rev2, y'), l''))), app(app(rev2, x''), app(app(rev2, y'), l''))))
app(rev, nil) -> nil
app(rev, app(app(cons, x), l)) -> app(app(cons, app(app(rev1, x), l)), app(app(rev2, x), l))
app(app(rev1, 0), nil) -> 0
app(app(rev1, app(s, x)), nil) -> app(s, x)
app(app(rev1, x), app(app(cons, y), l)) -> app(app(rev1, y), l)
app(app(rev2, x), nil) -> nil
app(app(rev2, x), app(app(cons, y), l)) -> app(rev, app(app(cons, x), app(app(rev2, y), l)))
innermost
one new Dependency Pair is created:
APP(app(rev2, x), app(app(cons, y0), app(app(cons, y''), l''))) -> APP(app(cons, x), app(rev, app(app(cons, y0), app(app(rev2, y''), l''))))
APP(app(rev2, x), app(app(cons, y0), app(app(cons, y''), l''))) -> APP(app(cons, x), app(app(cons, app(app(rev1, y0), app(app(rev2, y''), l''))), app(app(rev2, y0), app(app(rev2, y''), l''))))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Rw
...
→DP Problem 8
↳Polynomial Ordering
APP(app(rev2, x), app(app(cons, y0), app(app(cons, y''), l''))) -> APP(app(cons, x), app(app(cons, app(app(rev1, y0), app(app(rev2, y''), l''))), app(app(rev2, y0), app(app(rev2, y''), l''))))
APP(rev, app(app(cons, x''), app(app(cons, y'), l''))) -> APP(app(cons, app(app(rev1, y'), l'')), app(app(cons, app(app(rev1, x''), app(app(rev2, y'), l''))), app(app(rev2, x''), app(app(rev2, y'), l''))))
APP(rev, app(app(cons, x''), app(app(cons, y'), l''))) -> APP(app(cons, app(app(rev1, y'), l'')), app(app(cons, app(app(rev1, x''), app(app(rev2, y'), l''))), app(app(rev2, x''), app(app(rev2, y'), l''))))
APP(app(rev2, x), app(app(cons, y), l)) -> APP(rev, app(app(cons, x), app(app(rev2, y), l)))
APP(app(rev1, x), app(app(cons, y), l)) -> APP(app(rev1, y), l)
APP(rev, app(app(cons, x), l)) -> APP(app(rev2, x), l)
APP(rev, app(app(cons, x), l)) -> APP(app(rev1, x), l)
APP(app(rev2, x), app(app(cons, y), l)) -> APP(app(rev2, y), l)
app(rev, nil) -> nil
app(rev, app(app(cons, x), l)) -> app(app(cons, app(app(rev1, x), l)), app(app(rev2, x), l))
app(app(rev1, 0), nil) -> 0
app(app(rev1, app(s, x)), nil) -> app(s, x)
app(app(rev1, x), app(app(cons, y), l)) -> app(app(rev1, y), l)
app(app(rev2, x), nil) -> nil
app(app(rev2, x), app(app(cons, y), l)) -> app(rev, app(app(cons, x), app(app(rev2, y), l)))
innermost
APP(app(rev2, x), app(app(cons, y0), app(app(cons, y''), l''))) -> APP(app(cons, x), app(app(cons, app(app(rev1, y0), app(app(rev2, y''), l''))), app(app(rev2, y0), app(app(rev2, y''), l''))))
APP(rev, app(app(cons, x''), app(app(cons, y'), l''))) -> APP(app(cons, app(app(rev1, y'), l'')), app(app(cons, app(app(rev1, x''), app(app(rev2, y'), l''))), app(app(rev2, x''), app(app(rev2, y'), l''))))
APP(rev, app(app(cons, x), l)) -> APP(app(rev1, x), l)
app(rev, nil) -> nil
app(rev, app(app(cons, x), l)) -> app(app(cons, app(app(rev1, x), l)), app(app(rev2, x), l))
app(app(rev1, 0), nil) -> 0
app(app(rev1, app(s, x)), nil) -> app(s, x)
app(app(rev1, x), app(app(cons, y), l)) -> app(app(rev1, y), l)
app(app(rev2, x), nil) -> nil
app(app(rev2, x), app(app(cons, y), l)) -> app(rev, app(app(cons, x), app(app(rev2, y), l)))
POL(rev2) = 1 POL(rev) = 1 POL(0) = 0 POL(cons) = 0 POL(rev1) = 0 POL(nil) = 0 POL(s) = 0 POL(app(x1, x2)) = x1 POL(APP(x1, x2)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Rw
...
→DP Problem 9
↳Remaining Obligation(s)
APP(app(rev2, x), app(app(cons, y), l)) -> APP(rev, app(app(cons, x), app(app(rev2, y), l)))
APP(app(rev1, x), app(app(cons, y), l)) -> APP(app(rev1, y), l)
APP(rev, app(app(cons, x), l)) -> APP(app(rev2, x), l)
APP(app(rev2, x), app(app(cons, y), l)) -> APP(app(rev2, y), l)
app(rev, nil) -> nil
app(rev, app(app(cons, x), l)) -> app(app(cons, app(app(rev1, x), l)), app(app(rev2, x), l))
app(app(rev1, 0), nil) -> 0
app(app(rev1, app(s, x)), nil) -> app(s, x)
app(app(rev1, x), app(app(cons, y), l)) -> app(app(rev1, y), l)
app(app(rev2, x), nil) -> nil
app(app(rev2, x), app(app(cons, y), l)) -> app(rev, app(app(cons, x), app(app(rev2, y), l)))
innermost