Term Rewriting System R:
[x, l, y]
app(rev, nil) -> nil
app(rev, app(app(cons, x), l)) -> app(app(cons, app(app(rev1, x), l)), app(app(rev2, x), l))
app(app(rev1, 0), nil) -> 0
app(app(rev1, app(s, x)), nil) -> app(s, x)
app(app(rev1, x), app(app(cons, y), l)) -> app(app(rev1, y), l)
app(app(rev2, x), nil) -> nil
app(app(rev2, x), app(app(cons, y), l)) -> app(rev, app(app(cons, x), app(app(rev2, y), l)))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

APP(rev, app(app(cons, x), l)) -> APP(app(cons, app(app(rev1, x), l)), app(app(rev2, x), l))
APP(rev, app(app(cons, x), l)) -> APP(cons, app(app(rev1, x), l))
APP(rev, app(app(cons, x), l)) -> APP(app(rev1, x), l)
APP(rev, app(app(cons, x), l)) -> APP(rev1, x)
APP(rev, app(app(cons, x), l)) -> APP(app(rev2, x), l)
APP(rev, app(app(cons, x), l)) -> APP(rev2, x)
APP(app(rev1, x), app(app(cons, y), l)) -> APP(app(rev1, y), l)
APP(app(rev1, x), app(app(cons, y), l)) -> APP(rev1, y)
APP(app(rev2, x), app(app(cons, y), l)) -> APP(rev, app(app(cons, x), app(app(rev2, y), l)))
APP(app(rev2, x), app(app(cons, y), l)) -> APP(app(cons, x), app(app(rev2, y), l))
APP(app(rev2, x), app(app(cons, y), l)) -> APP(cons, x)
APP(app(rev2, x), app(app(cons, y), l)) -> APP(app(rev2, y), l)
APP(app(rev2, x), app(app(cons, y), l)) -> APP(rev2, y)

Furthermore, R contains one SCC.


   R
DPs
       →DP Problem 1
Polynomial Ordering


Dependency Pairs:

APP(app(rev2, x), app(app(cons, y), l)) -> APP(app(rev2, y), l)
APP(app(rev2, x), app(app(cons, y), l)) -> APP(app(cons, x), app(app(rev2, y), l))
APP(app(rev2, x), app(app(cons, y), l)) -> APP(rev, app(app(cons, x), app(app(rev2, y), l)))
APP(app(rev1, x), app(app(cons, y), l)) -> APP(app(rev1, y), l)
APP(rev, app(app(cons, x), l)) -> APP(app(rev2, x), l)
APP(rev, app(app(cons, x), l)) -> APP(app(rev1, x), l)
APP(rev, app(app(cons, x), l)) -> APP(app(cons, app(app(rev1, x), l)), app(app(rev2, x), l))


Rules:


app(rev, nil) -> nil
app(rev, app(app(cons, x), l)) -> app(app(cons, app(app(rev1, x), l)), app(app(rev2, x), l))
app(app(rev1, 0), nil) -> 0
app(app(rev1, app(s, x)), nil) -> app(s, x)
app(app(rev1, x), app(app(cons, y), l)) -> app(app(rev1, y), l)
app(app(rev2, x), nil) -> nil
app(app(rev2, x), app(app(cons, y), l)) -> app(rev, app(app(cons, x), app(app(rev2, y), l)))


Strategy:

innermost




The following dependency pairs can be strictly oriented:

APP(app(rev2, x), app(app(cons, y), l)) -> APP(app(cons, x), app(app(rev2, y), l))
APP(rev, app(app(cons, x), l)) -> APP(app(rev1, x), l)
APP(rev, app(app(cons, x), l)) -> APP(app(cons, app(app(rev1, x), l)), app(app(rev2, x), l))


Additionally, the following usable rules for innermost can be oriented:

app(rev, nil) -> nil
app(rev, app(app(cons, x), l)) -> app(app(cons, app(app(rev1, x), l)), app(app(rev2, x), l))
app(app(rev1, 0), nil) -> 0
app(app(rev1, app(s, x)), nil) -> app(s, x)
app(app(rev1, x), app(app(cons, y), l)) -> app(app(rev1, y), l)
app(app(rev2, x), nil) -> nil
app(app(rev2, x), app(app(cons, y), l)) -> app(rev, app(app(cons, x), app(app(rev2, y), l)))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(rev2)=  1  
  POL(rev)=  1  
  POL(0)=  0  
  POL(cons)=  0  
  POL(rev1)=  0  
  POL(nil)=  0  
  POL(s)=  0  
  POL(app(x1, x2))=  x1  
  POL(APP(x1, x2))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
           →DP Problem 2
Remaining Obligation(s)




The following remains to be proven:
Dependency Pairs:

APP(app(rev2, x), app(app(cons, y), l)) -> APP(app(rev2, y), l)
APP(app(rev2, x), app(app(cons, y), l)) -> APP(rev, app(app(cons, x), app(app(rev2, y), l)))
APP(app(rev1, x), app(app(cons, y), l)) -> APP(app(rev1, y), l)
APP(rev, app(app(cons, x), l)) -> APP(app(rev2, x), l)


Rules:


app(rev, nil) -> nil
app(rev, app(app(cons, x), l)) -> app(app(cons, app(app(rev1, x), l)), app(app(rev2, x), l))
app(app(rev1, 0), nil) -> 0
app(app(rev1, app(s, x)), nil) -> app(s, x)
app(app(rev1, x), app(app(cons, y), l)) -> app(app(rev1, y), l)
app(app(rev2, x), nil) -> nil
app(app(rev2, x), app(app(cons, y), l)) -> app(rev, app(app(cons, x), app(app(rev2, y), l)))


Strategy:

innermost



Innermost Termination of R could not be shown.
Duration:
0:00 minutes