Term Rewriting System R:
[x, y]
app(pred, app(s, x)) -> x
app(app(minus, x), 0) -> x
app(app(minus, x), app(s, y)) -> app(pred, app(app(minus, x), y))
app(app(quot, 0), app(s, y)) -> 0
app(app(quot, app(s, x)), app(s, y)) -> app(s, app(app(quot, app(app(minus, x), y)), app(s, y)))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

APP(app(minus, x), app(s, y)) -> APP(pred, app(app(minus, x), y))
APP(app(minus, x), app(s, y)) -> APP(app(minus, x), y)
APP(app(quot, app(s, x)), app(s, y)) -> APP(s, app(app(quot, app(app(minus, x), y)), app(s, y)))
APP(app(quot, app(s, x)), app(s, y)) -> APP(app(quot, app(app(minus, x), y)), app(s, y))
APP(app(quot, app(s, x)), app(s, y)) -> APP(quot, app(app(minus, x), y))
APP(app(quot, app(s, x)), app(s, y)) -> APP(app(minus, x), y)
APP(app(quot, app(s, x)), app(s, y)) -> APP(minus, x)

Furthermore, R contains two SCCs.


   R
DPs
       →DP Problem 1
Remaining Obligation(s)
       →DP Problem 2
Remaining Obligation(s)




The following remains to be proven:


   R
DPs
       →DP Problem 1
Remaining Obligation(s)
       →DP Problem 2
Remaining Obligation(s)




The following remains to be proven:

Innermost Termination of R could not be shown.
Duration:
0:06 minutes