Term Rewriting System R:
[x]
f(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> f(a, f(b, f(a, f(a, f(b, f(a, f(a, f(a, f(b, x)))))))))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

F(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> F(a, f(b, f(a, f(a, f(b, f(a, f(a, f(a, f(b, x)))))))))
F(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> F(b, f(a, f(a, f(b, f(a, f(a, f(a, f(b, x))))))))
F(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> F(a, f(a, f(b, f(a, f(a, f(a, f(b, x)))))))
F(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> F(a, f(b, f(a, f(a, f(a, f(b, x))))))
F(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> F(b, f(a, f(a, f(a, f(b, x)))))
F(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> F(a, f(a, f(a, f(b, x))))
F(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> F(a, f(a, f(b, x)))
F(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> F(a, f(b, x))
F(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> F(b, x)

Furthermore, R contains one SCC.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering


Dependency Pairs:

F(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> F(a, f(b, x))
F(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> F(a, f(a, f(b, x)))
F(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> F(a, f(a, f(a, f(b, x))))
F(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> F(a, f(b, f(a, f(a, f(a, f(b, x))))))
F(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> F(a, f(a, f(b, f(a, f(a, f(a, f(b, x)))))))
F(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> F(a, f(b, f(a, f(a, f(b, f(a, f(a, f(a, f(b, x)))))))))


Rule:


f(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> f(a, f(b, f(a, f(a, f(b, f(a, f(a, f(a, f(b, x)))))))))


Strategy:

innermost




The following dependency pairs can be strictly oriented:

F(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> F(a, f(b, x))
F(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> F(a, f(b, f(a, f(a, f(a, f(b, x))))))
F(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> F(a, f(b, f(a, f(a, f(b, f(a, f(a, f(a, f(b, x)))))))))


The following usable rule for innermost can be oriented:

f(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> f(a, f(b, f(a, f(a, f(b, f(a, f(a, f(a, f(b, x)))))))))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(b)=  0  
  POL(a)=  1  
  POL(F(x1, x2))=  1 + x1 + x2  

resulting in one new DP problem.
Used Argument Filtering System:
F(x1, x2) -> F(x1, x2)
f(x1, x2) -> x1


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 2
Remaining Obligation(s)




The following remains to be proven:
Dependency Pairs:

F(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> F(a, f(a, f(b, x)))
F(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> F(a, f(a, f(a, f(b, x))))
F(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> F(a, f(a, f(b, f(a, f(a, f(a, f(b, x)))))))


Rule:


f(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> f(a, f(b, f(a, f(a, f(b, f(a, f(a, f(a, f(b, x)))))))))


Strategy:

innermost



Innermost Termination of R could not be shown.
Duration:
0:01 minutes