Term Rewriting System R:
[x]
f(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> f(a, f(b, f(a, f(a, f(b, f(a, f(a, f(a, f(b, x)))))))))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

F(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> F(a, f(b, f(a, f(a, f(b, f(a, f(a, f(a, f(b, x)))))))))
F(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> F(b, f(a, f(a, f(b, f(a, f(a, f(a, f(b, x))))))))
F(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> F(a, f(a, f(b, f(a, f(a, f(a, f(b, x)))))))
F(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> F(a, f(b, f(a, f(a, f(a, f(b, x))))))
F(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> F(b, f(a, f(a, f(a, f(b, x)))))
F(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> F(a, f(a, f(a, f(b, x))))
F(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> F(a, f(a, f(b, x)))
F(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> F(a, f(b, x))
F(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> F(b, x)

Furthermore, R contains one SCC.


   R
DPs
       →DP Problem 1
Narrowing Transformation


Dependency Pairs:

F(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> F(a, f(b, x))
F(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> F(a, f(a, f(b, x)))
F(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> F(a, f(a, f(a, f(b, x))))
F(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> F(a, f(b, f(a, f(a, f(a, f(b, x))))))
F(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> F(a, f(a, f(b, f(a, f(a, f(a, f(b, x)))))))
F(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> F(a, f(b, f(a, f(a, f(b, f(a, f(a, f(a, f(b, x)))))))))


Rule:


f(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> f(a, f(b, f(a, f(a, f(b, f(a, f(a, f(a, f(b, x)))))))))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

F(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> F(a, f(b, x))
no new Dependency Pairs are created.
The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Nar
           →DP Problem 2
Narrowing Transformation


Dependency Pairs:

F(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> F(a, f(a, f(a, f(b, x))))
F(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> F(a, f(b, f(a, f(a, f(a, f(b, x))))))
F(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> F(a, f(a, f(b, f(a, f(a, f(a, f(b, x)))))))
F(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> F(a, f(b, f(a, f(a, f(b, f(a, f(a, f(a, f(b, x)))))))))
F(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> F(a, f(a, f(b, x)))


Rule:


f(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> f(a, f(b, f(a, f(a, f(b, f(a, f(a, f(a, f(b, x)))))))))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

F(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> F(a, f(b, f(a, f(a, f(b, f(a, f(a, f(a, f(b, x)))))))))
one new Dependency Pair is created:

F(a, f(a, f(b, f(a, f(a, f(b, f(a, f(a, f(a, f(b, f(a, x''))))))))))) -> F(a, f(b, f(a, f(a, f(b, f(a, f(a, f(b, f(a, f(a, f(b, f(a, f(a, f(a, f(b, x'')))))))))))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Nar
           →DP Problem 2
Nar
             ...
               →DP Problem 3
Narrowing Transformation


Dependency Pairs:

F(a, f(a, f(b, f(a, f(a, f(b, f(a, f(a, f(a, f(b, f(a, x''))))))))))) -> F(a, f(b, f(a, f(a, f(b, f(a, f(a, f(b, f(a, f(a, f(b, f(a, f(a, f(a, f(b, x'')))))))))))))))
F(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> F(a, f(a, f(b, x)))
F(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> F(a, f(b, f(a, f(a, f(a, f(b, x))))))
F(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> F(a, f(a, f(b, f(a, f(a, f(a, f(b, x)))))))
F(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> F(a, f(a, f(a, f(b, x))))


Rule:


f(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> f(a, f(b, f(a, f(a, f(b, f(a, f(a, f(a, f(b, x)))))))))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

F(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> F(a, f(a, f(b, f(a, f(a, f(a, f(b, x)))))))
one new Dependency Pair is created:

F(a, f(a, f(b, f(a, f(a, f(b, f(a, f(a, f(a, f(b, f(a, x''))))))))))) -> F(a, f(a, f(b, f(a, f(a, f(b, f(a, f(a, f(b, f(a, f(a, f(a, f(b, x'')))))))))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Nar
           →DP Problem 2
Nar
             ...
               →DP Problem 4
Narrowing Transformation


Dependency Pairs:

F(a, f(a, f(b, f(a, f(a, f(b, f(a, f(a, f(a, f(b, f(a, x''))))))))))) -> F(a, f(a, f(b, f(a, f(a, f(b, f(a, f(a, f(b, f(a, f(a, f(a, f(b, x'')))))))))))))
F(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> F(a, f(a, f(b, x)))
F(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> F(a, f(a, f(a, f(b, x))))
F(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> F(a, f(b, f(a, f(a, f(a, f(b, x))))))
F(a, f(a, f(b, f(a, f(a, f(b, f(a, f(a, f(a, f(b, f(a, x''))))))))))) -> F(a, f(b, f(a, f(a, f(b, f(a, f(a, f(b, f(a, f(a, f(b, f(a, f(a, f(a, f(b, x'')))))))))))))))


Rule:


f(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> f(a, f(b, f(a, f(a, f(b, f(a, f(a, f(a, f(b, x)))))))))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

F(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> F(a, f(b, f(a, f(a, f(a, f(b, x))))))
one new Dependency Pair is created:

F(a, f(a, f(b, f(a, f(a, f(b, f(a, f(a, f(a, f(b, f(a, x''))))))))))) -> F(a, f(b, f(a, f(a, f(b, f(a, f(a, f(b, f(a, f(a, f(a, f(b, x''))))))))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Nar
           →DP Problem 2
Nar
             ...
               →DP Problem 5
Narrowing Transformation


Dependency Pairs:

F(a, f(a, f(b, f(a, f(a, f(b, f(a, f(a, f(a, f(b, f(a, x''))))))))))) -> F(a, f(b, f(a, f(a, f(b, f(a, f(a, f(b, f(a, f(a, f(a, f(b, x''))))))))))))
F(a, f(a, f(b, f(a, f(a, f(b, f(a, f(a, f(a, f(b, f(a, x''))))))))))) -> F(a, f(b, f(a, f(a, f(b, f(a, f(a, f(b, f(a, f(a, f(b, f(a, f(a, f(a, f(b, x'')))))))))))))))
F(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> F(a, f(a, f(b, x)))
F(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> F(a, f(a, f(a, f(b, x))))
F(a, f(a, f(b, f(a, f(a, f(b, f(a, f(a, f(a, f(b, f(a, x''))))))))))) -> F(a, f(a, f(b, f(a, f(a, f(b, f(a, f(a, f(b, f(a, f(a, f(a, f(b, x'')))))))))))))


Rule:


f(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> f(a, f(b, f(a, f(a, f(b, f(a, f(a, f(a, f(b, x)))))))))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

F(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> F(a, f(a, f(a, f(b, x))))
one new Dependency Pair is created:

F(a, f(a, f(b, f(a, f(a, f(b, f(a, f(a, f(a, f(b, f(a, x''))))))))))) -> F(a, f(a, f(b, f(a, f(a, f(b, f(a, f(a, f(a, f(b, x''))))))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Nar
           →DP Problem 2
Nar
             ...
               →DP Problem 6
Remaining Obligation(s)




The following remains to be proven:
Dependency Pairs:

F(a, f(a, f(b, f(a, f(a, f(b, f(a, f(a, f(a, f(b, f(a, x''))))))))))) -> F(a, f(a, f(b, f(a, f(a, f(b, f(a, f(a, f(a, f(b, x''))))))))))
F(a, f(a, f(b, f(a, f(a, f(b, f(a, f(a, f(a, f(b, f(a, x''))))))))))) -> F(a, f(a, f(b, f(a, f(a, f(b, f(a, f(a, f(b, f(a, f(a, f(a, f(b, x'')))))))))))))
F(a, f(a, f(b, f(a, f(a, f(b, f(a, f(a, f(a, f(b, f(a, x''))))))))))) -> F(a, f(b, f(a, f(a, f(b, f(a, f(a, f(b, f(a, f(a, f(b, f(a, f(a, f(a, f(b, x'')))))))))))))))
F(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> F(a, f(a, f(b, x)))
F(a, f(a, f(b, f(a, f(a, f(b, f(a, f(a, f(a, f(b, f(a, x''))))))))))) -> F(a, f(b, f(a, f(a, f(b, f(a, f(a, f(b, f(a, f(a, f(a, f(b, x''))))))))))))


Rule:


f(a, f(a, f(b, f(a, f(a, f(b, f(a, x))))))) -> f(a, f(b, f(a, f(a, f(b, f(a, f(a, f(a, f(b, x)))))))))


Strategy:

innermost



Innermost Termination of R could not be shown.
Duration:
0:01 minutes