R
↳Dependency Pair Analysis
F(0, 1, x) -> F(g(x), g(x), x)
F(g(x), y, z) -> F(x, y, z)
F(x, g(y), z) -> F(x, y, z)
F(x, y, g(z)) -> F(x, y, z)
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
F(x, y, g(z)) -> F(x, y, z)
F(x, g(y), z) -> F(x, y, z)
F(g(x), y, z) -> F(x, y, z)
F(0, 1, x) -> F(g(x), g(x), x)
f(0, 1, x) -> f(g(x), g(x), x)
f(g(x), y, z) -> g(f(x, y, z))
f(x, g(y), z) -> g(f(x, y, z))
f(x, y, g(z)) -> g(f(x, y, z))
innermost
F(x, y, g(z)) -> F(x, y, z)
POL(g(x1)) = 1 + x1
F(x1, x2, x3) -> x3
g(x1) -> g(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Forward Instantiation Transformation
F(x, g(y), z) -> F(x, y, z)
F(g(x), y, z) -> F(x, y, z)
F(0, 1, x) -> F(g(x), g(x), x)
f(0, 1, x) -> f(g(x), g(x), x)
f(g(x), y, z) -> g(f(x, y, z))
f(x, g(y), z) -> g(f(x, y, z))
f(x, y, g(z)) -> g(f(x, y, z))
innermost
three new Dependency Pairs are created:
F(g(x), y, z) -> F(x, y, z)
F(g(g(x'')), y'', z'') -> F(g(x''), y'', z'')
F(g(0), 1, z') -> F(0, 1, z')
F(g(x''), g(y''), z'') -> F(x'', g(y''), z'')
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳FwdInst
...
→DP Problem 3
↳Forward Instantiation Transformation
F(g(x''), g(y''), z'') -> F(x'', g(y''), z'')
F(g(0), 1, z') -> F(0, 1, z')
F(g(g(x'')), y'', z'') -> F(g(x''), y'', z'')
F(0, 1, x) -> F(g(x), g(x), x)
F(x, g(y), z) -> F(x, y, z)
f(0, 1, x) -> f(g(x), g(x), x)
f(g(x), y, z) -> g(f(x, y, z))
f(x, g(y), z) -> g(f(x, y, z))
f(x, y, g(z)) -> g(f(x, y, z))
innermost
five new Dependency Pairs are created:
F(x, g(y), z) -> F(x, y, z)
F(x'', g(g(y'')), z'') -> F(x'', g(y''), z'')
F(0, g(1), z') -> F(0, 1, z')
F(g(g(x'''')), g(y'), z') -> F(g(g(x'''')), y', z')
F(g(0), g(1), z') -> F(g(0), 1, z')
F(g(x''''), g(g(y'''')), z') -> F(g(x''''), g(y''''), z')
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳FwdInst
...
→DP Problem 4
↳Remaining Obligation(s)
F(g(0), g(1), z') -> F(g(0), 1, z')
F(g(x''''), g(g(y'''')), z') -> F(g(x''''), g(y''''), z')
F(g(g(x'''')), g(y'), z') -> F(g(g(x'''')), y', z')
F(0, g(1), z') -> F(0, 1, z')
F(x'', g(g(y'')), z'') -> F(x'', g(y''), z'')
F(0, 1, x) -> F(g(x), g(x), x)
F(g(0), 1, z') -> F(0, 1, z')
F(g(g(x'')), y'', z'') -> F(g(x''), y'', z'')
F(g(x''), g(y''), z'') -> F(x'', g(y''), z'')
f(0, 1, x) -> f(g(x), g(x), x)
f(g(x), y, z) -> g(f(x, y, z))
f(x, g(y), z) -> g(f(x, y, z))
f(x, y, g(z)) -> g(f(x, y, z))
innermost