Term Rewriting System R:
[x, y]
a(a(f(x, y))) -> f(a(b(a(b(a(x))))), a(b(a(b(a(y))))))
f(a(x), a(y)) -> a(f(x, y))
f(b(x), b(y)) -> b(f(x, y))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

A(a(f(x, y))) -> F(a(b(a(b(a(x))))), a(b(a(b(a(y))))))
A(a(f(x, y))) -> A(b(a(b(a(x)))))
A(a(f(x, y))) -> A(b(a(x)))
A(a(f(x, y))) -> A(x)
A(a(f(x, y))) -> A(b(a(b(a(y)))))
A(a(f(x, y))) -> A(b(a(y)))
A(a(f(x, y))) -> A(y)
F(a(x), a(y)) -> A(f(x, y))
F(a(x), a(y)) -> F(x, y)
F(b(x), b(y)) -> F(x, y)

Furthermore, R contains one SCC.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering


Dependency Pairs:

F(b(x), b(y)) -> F(x, y)
F(a(x), a(y)) -> F(x, y)
A(a(f(x, y))) -> A(y)
A(a(f(x, y))) -> A(x)
F(a(x), a(y)) -> A(f(x, y))
A(a(f(x, y))) -> F(a(b(a(b(a(x))))), a(b(a(b(a(y))))))


Rules:


a(a(f(x, y))) -> f(a(b(a(b(a(x))))), a(b(a(b(a(y))))))
f(a(x), a(y)) -> a(f(x, y))
f(b(x), b(y)) -> b(f(x, y))


Strategy:

innermost




The following dependency pairs can be strictly oriented:

A(a(f(x, y))) -> A(y)
A(a(f(x, y))) -> A(x)


The following usable rules for innermost can be oriented:

f(a(x), a(y)) -> a(f(x, y))
f(b(x), b(y)) -> b(f(x, y))
a(a(f(x, y))) -> f(a(b(a(b(a(x))))), a(b(a(b(a(y))))))


Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
{F, f}

resulting in one new DP problem.
Used Argument Filtering System:
F(x1, x2) -> F(x1, x2)
A(x1) -> x1
a(x1) -> x1
f(x1, x2) -> f(x1, x2)
b(x1) -> x1


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 2
Remaining Obligation(s)




The following remains to be proven:
Dependency Pairs:

F(b(x), b(y)) -> F(x, y)
F(a(x), a(y)) -> F(x, y)
F(a(x), a(y)) -> A(f(x, y))
A(a(f(x, y))) -> F(a(b(a(b(a(x))))), a(b(a(b(a(y))))))


Rules:


a(a(f(x, y))) -> f(a(b(a(b(a(x))))), a(b(a(b(a(y))))))
f(a(x), a(y)) -> a(f(x, y))
f(b(x), b(y)) -> b(f(x, y))


Strategy:

innermost



Innermost Termination of R could not be shown.
Duration:
0:02 minutes