Term Rewriting System R:
[x, y, z]
f(f(f(a, b), c), x) -> f(b, f(a, f(c, f(b, x))))
f(x, f(y, z)) -> f(f(x, y), z)

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

F(f(f(a, b), c), x) -> F(b, f(a, f(c, f(b, x))))
F(f(f(a, b), c), x) -> F(a, f(c, f(b, x)))
F(f(f(a, b), c), x) -> F(c, f(b, x))
F(f(f(a, b), c), x) -> F(b, x)
F(x, f(y, z)) -> F(f(x, y), z)
F(x, f(y, z)) -> F(x, y)

Furthermore, R contains one SCC.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering


Dependency Pairs:

F(f(f(a, b), c), x) -> F(b, x)
F(f(f(a, b), c), x) -> F(c, f(b, x))
F(x, f(y, z)) -> F(x, y)
F(f(f(a, b), c), x) -> F(a, f(c, f(b, x)))
F(x, f(y, z)) -> F(f(x, y), z)
F(f(f(a, b), c), x) -> F(b, f(a, f(c, f(b, x))))


Rules:


f(f(f(a, b), c), x) -> f(b, f(a, f(c, f(b, x))))
f(x, f(y, z)) -> f(f(x, y), z)


Strategy:

innermost




The following dependency pairs can be strictly oriented:

F(f(f(a, b), c), x) -> F(b, x)
F(f(f(a, b), c), x) -> F(c, f(b, x))
F(f(f(a, b), c), x) -> F(b, f(a, f(c, f(b, x))))


The following usable rules for innermost can be oriented:

f(f(f(a, b), c), x) -> f(b, f(a, f(c, f(b, x))))
f(x, f(y, z)) -> f(f(x, y), z)


Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
a > c
a > b

resulting in one new DP problem.
Used Argument Filtering System:
F(x1, x2) -> x1
f(x1, x2) -> x1


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 2
Narrowing Transformation


Dependency Pairs:

F(x, f(y, z)) -> F(x, y)
F(f(f(a, b), c), x) -> F(a, f(c, f(b, x)))
F(x, f(y, z)) -> F(f(x, y), z)


Rules:


f(f(f(a, b), c), x) -> f(b, f(a, f(c, f(b, x))))
f(x, f(y, z)) -> f(f(x, y), z)


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

F(f(f(a, b), c), x) -> F(a, f(c, f(b, x)))
two new Dependency Pairs are created:

F(f(f(a, b), c), x'') -> F(a, f(f(c, b), x''))
F(f(f(a, b), c), f(y', z')) -> F(a, f(c, f(f(b, y'), z')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
AFS
           →DP Problem 2
Nar
             ...
               →DP Problem 3
Forward Instantiation Transformation


Dependency Pairs:

F(f(f(a, b), c), f(y', z')) -> F(a, f(c, f(f(b, y'), z')))
F(f(f(a, b), c), x'') -> F(a, f(f(c, b), x''))
F(x, f(y, z)) -> F(f(x, y), z)
F(x, f(y, z)) -> F(x, y)


Rules:


f(f(f(a, b), c), x) -> f(b, f(a, f(c, f(b, x))))
f(x, f(y, z)) -> f(f(x, y), z)


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

F(x, f(y, z)) -> F(x, y)
three new Dependency Pairs are created:

F(x'', f(f(y'', z''), z)) -> F(x'', f(y'', z''))
F(f(f(a, b), c), f(y', z)) -> F(f(f(a, b), c), y')
F(f(f(a, b), c), f(f(y''', z'''), z)) -> F(f(f(a, b), c), f(y''', z'''))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
AFS
           →DP Problem 2
Nar
             ...
               →DP Problem 4
Remaining Obligation(s)




The following remains to be proven:
Dependency Pairs:

F(f(f(a, b), c), f(f(y''', z'''), z)) -> F(f(f(a, b), c), f(y''', z'''))
F(f(f(a, b), c), f(y', z)) -> F(f(f(a, b), c), y')
F(x'', f(f(y'', z''), z)) -> F(x'', f(y'', z''))
F(f(f(a, b), c), x'') -> F(a, f(f(c, b), x''))
F(x, f(y, z)) -> F(f(x, y), z)
F(f(f(a, b), c), f(y', z')) -> F(a, f(c, f(f(b, y'), z')))


Rules:


f(f(f(a, b), c), x) -> f(b, f(a, f(c, f(b, x))))
f(x, f(y, z)) -> f(f(x, y), z)


Strategy:

innermost



Innermost Termination of R could not be shown.
Duration:
0:00 minutes