R
↳Dependency Pair Analysis
F(f(a, b), x) -> F(b, f(a, f(c, f(b, f(a, x)))))
F(f(a, b), x) -> F(a, f(c, f(b, f(a, x))))
F(f(a, b), x) -> F(c, f(b, f(a, x)))
F(f(a, b), x) -> F(b, f(a, x))
F(f(a, b), x) -> F(a, x)
F(x, f(y, z)) -> F(f(x, y), z)
F(x, f(y, z)) -> F(x, y)
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
F(f(a, b), x) -> F(a, x)
F(f(a, b), x) -> F(b, f(a, x))
F(f(a, b), x) -> F(c, f(b, f(a, x)))
F(x, f(y, z)) -> F(x, y)
F(f(a, b), x) -> F(a, f(c, f(b, f(a, x))))
F(x, f(y, z)) -> F(f(x, y), z)
F(f(a, b), x) -> F(b, f(a, f(c, f(b, f(a, x)))))
f(f(a, b), x) -> f(b, f(a, f(c, f(b, f(a, x)))))
f(x, f(y, z)) -> f(f(x, y), z)
innermost
F(f(a, b), x) -> F(b, f(a, x))
F(f(a, b), x) -> F(c, f(b, f(a, x)))
F(f(a, b), x) -> F(b, f(a, f(c, f(b, f(a, x)))))
f(f(a, b), x) -> f(b, f(a, f(c, f(b, f(a, x)))))
f(x, f(y, z)) -> f(f(x, y), z)
a > c
a > b
F(x1, x2) -> x1
f(x1, x2) -> x1
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Narrowing Transformation
F(f(a, b), x) -> F(a, x)
F(x, f(y, z)) -> F(x, y)
F(f(a, b), x) -> F(a, f(c, f(b, f(a, x))))
F(x, f(y, z)) -> F(f(x, y), z)
f(f(a, b), x) -> f(b, f(a, f(c, f(b, f(a, x)))))
f(x, f(y, z)) -> f(f(x, y), z)
innermost
three new Dependency Pairs are created:
F(f(a, b), x) -> F(a, f(c, f(b, f(a, x))))
F(f(a, b), x'') -> F(a, f(f(c, b), f(a, x'')))
F(f(a, b), x'') -> F(a, f(c, f(f(b, a), x'')))
F(f(a, b), f(y', z')) -> F(a, f(c, f(b, f(f(a, y'), z'))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Nar
...
→DP Problem 3
↳Remaining Obligation(s)
F(f(a, b), f(y', z')) -> F(a, f(c, f(b, f(f(a, y'), z'))))
F(f(a, b), x'') -> F(a, f(c, f(f(b, a), x'')))
F(x, f(y, z)) -> F(x, y)
F(f(a, b), x'') -> F(a, f(f(c, b), f(a, x'')))
F(x, f(y, z)) -> F(f(x, y), z)
F(f(a, b), x) -> F(a, x)
f(f(a, b), x) -> f(b, f(a, f(c, f(b, f(a, x)))))
f(x, f(y, z)) -> f(f(x, y), z)
innermost