Term Rewriting System R:
[x, y]
f(x, a(a(b(b(y))))) -> f(a(a(a(b(b(b(x)))))), y)
f(a(x), y) -> f(x, a(y))
f(b(x), y) -> f(x, b(y))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

F(x, a(a(b(b(y))))) -> F(a(a(a(b(b(b(x)))))), y)
F(a(x), y) -> F(x, a(y))
F(b(x), y) -> F(x, b(y))

Furthermore, R contains one SCC.


   R
DPs
       →DP Problem 1
Instantiation Transformation


Dependency Pairs:

F(b(x), y) -> F(x, b(y))
F(a(x), y) -> F(x, a(y))
F(x, a(a(b(b(y))))) -> F(a(a(a(b(b(b(x)))))), y)


Rules:


f(x, a(a(b(b(y))))) -> f(a(a(a(b(b(b(x)))))), y)
f(a(x), y) -> f(x, a(y))
f(b(x), y) -> f(x, b(y))


Strategy:

innermost




On this DP problem, an Instantiation SCC transformation can be performed.
As a result of transforming the rule

F(a(x), y) -> F(x, a(y))
three new Dependency Pairs are created:

F(a(x''), a(y'')) -> F(x'', a(a(y'')))
F(a(a(a(b(b(b(x'')))))), y'') -> F(a(a(b(b(b(x''))))), a(y''))
F(a(x''), b(y'')) -> F(x'', a(b(y'')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Inst
           →DP Problem 2
Instantiation Transformation


Dependency Pairs:

F(a(x''), b(y'')) -> F(x'', a(b(y'')))
F(a(x''), a(y'')) -> F(x'', a(a(y'')))
F(x, a(a(b(b(y))))) -> F(a(a(a(b(b(b(x)))))), y)
F(a(a(a(b(b(b(x'')))))), y'') -> F(a(a(b(b(b(x''))))), a(y''))
F(b(x), y) -> F(x, b(y))


Rules:


f(x, a(a(b(b(y))))) -> f(a(a(a(b(b(b(x)))))), y)
f(a(x), y) -> f(x, a(y))
f(b(x), y) -> f(x, b(y))


Strategy:

innermost




On this DP problem, an Instantiation SCC transformation can be performed.
As a result of transforming the rule

F(b(x), y) -> F(x, b(y))
three new Dependency Pairs are created:

F(b(x''), b(y'')) -> F(x'', b(b(y'')))
F(b(x'), a(a(y''''))) -> F(x', b(a(a(y''''))))
F(b(x'), a(b(y''''))) -> F(x', b(a(b(y''''))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Inst
           →DP Problem 2
Inst
             ...
               →DP Problem 3
Forward Instantiation Transformation


Dependency Pairs:

F(b(x'), a(b(y''''))) -> F(x', b(a(b(y''''))))
F(b(x''), b(y'')) -> F(x'', b(b(y'')))
F(b(x'), a(a(y''''))) -> F(x', b(a(a(y''''))))
F(a(a(a(b(b(b(x'')))))), y'') -> F(a(a(b(b(b(x''))))), a(y''))
F(x, a(a(b(b(y))))) -> F(a(a(a(b(b(b(x)))))), y)
F(a(x''), a(y'')) -> F(x'', a(a(y'')))
F(a(x''), b(y'')) -> F(x'', a(b(y'')))


Rules:


f(x, a(a(b(b(y))))) -> f(a(a(a(b(b(b(x)))))), y)
f(a(x), y) -> f(x, a(y))
f(b(x), y) -> f(x, b(y))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

F(a(x''), a(y'')) -> F(x'', a(a(y'')))
four new Dependency Pairs are created:

F(a(x'''), a(b(b(y''')))) -> F(x''', a(a(b(b(y''')))))
F(a(a(x'''')), a(y'''')) -> F(a(x''''), a(a(y'''')))
F(a(a(a(a(b(b(b(x''''))))))), a(y'''')) -> F(a(a(a(b(b(b(x'''')))))), a(a(y'''')))
F(a(b(x'''')), a(y''')) -> F(b(x''''), a(a(y''')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Inst
           →DP Problem 2
Inst
             ...
               →DP Problem 4
Forward Instantiation Transformation


Dependency Pairs:

F(a(b(x'''')), a(y''')) -> F(b(x''''), a(a(y''')))
F(a(a(a(a(b(b(b(x''''))))))), a(y'''')) -> F(a(a(a(b(b(b(x'''')))))), a(a(y'''')))
F(a(a(x'''')), a(y'''')) -> F(a(x''''), a(a(y'''')))
F(b(x''), b(y'')) -> F(x'', b(b(y'')))
F(b(x'), a(a(y''''))) -> F(x', b(a(a(y''''))))
F(a(x'''), a(b(b(y''')))) -> F(x''', a(a(b(b(y''')))))
F(a(x''), b(y'')) -> F(x'', a(b(y'')))
F(x, a(a(b(b(y))))) -> F(a(a(a(b(b(b(x)))))), y)
F(a(a(a(b(b(b(x'')))))), y'') -> F(a(a(b(b(b(x''))))), a(y''))
F(b(x'), a(b(y''''))) -> F(x', b(a(b(y''''))))


Rules:


f(x, a(a(b(b(y))))) -> f(a(a(a(b(b(b(x)))))), y)
f(a(x), y) -> f(x, a(y))
f(b(x), y) -> f(x, b(y))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

F(a(x''), b(y'')) -> F(x'', a(b(y'')))
six new Dependency Pairs are created:

F(a(a(a(a(b(b(b(x''''))))))), b(y'''')) -> F(a(a(a(b(b(b(x'''')))))), a(b(y'''')))
F(a(b(x'''')), b(y''')) -> F(b(x''''), a(b(y''')))
F(a(a(x''''')), b(b(y'''''))) -> F(a(x'''''), a(b(b(y'''''))))
F(a(a(a(x''''''))), b(y''')) -> F(a(a(x'''''')), a(b(y''')))
F(a(a(a(a(a(b(b(b(x'''''')))))))), b(y''')) -> F(a(a(a(a(b(b(b(x''''''))))))), a(b(y''')))
F(a(a(b(x''''''))), b(y''')) -> F(a(b(x'''''')), a(b(y''')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Inst
           →DP Problem 2
Inst
             ...
               →DP Problem 5
Forward Instantiation Transformation


Dependency Pairs:

F(a(a(x''''')), b(b(y'''''))) -> F(a(x'''''), a(b(b(y'''''))))
F(a(a(b(x''''''))), b(y''')) -> F(a(b(x'''''')), a(b(y''')))
F(a(a(a(a(a(b(b(b(x'''''')))))))), b(y''')) -> F(a(a(a(a(b(b(b(x''''''))))))), a(b(y''')))
F(a(a(a(x''''''))), b(y''')) -> F(a(a(x'''''')), a(b(y''')))
F(b(x'), a(b(y''''))) -> F(x', b(a(b(y''''))))
F(a(b(x'''')), b(y''')) -> F(b(x''''), a(b(y''')))
F(a(a(a(a(b(b(b(x''''))))))), a(y'''')) -> F(a(a(a(b(b(b(x'''')))))), a(a(y'''')))
F(a(a(x'''')), a(y'''')) -> F(a(x''''), a(a(y'''')))
F(a(a(a(a(b(b(b(x''''))))))), b(y'''')) -> F(a(a(a(b(b(b(x'''')))))), a(b(y'''')))
F(b(x''), b(y'')) -> F(x'', b(b(y'')))
F(b(x'), a(a(y''''))) -> F(x', b(a(a(y''''))))
F(a(x'''), a(b(b(y''')))) -> F(x''', a(a(b(b(y''')))))
F(a(a(a(b(b(b(x'')))))), y'') -> F(a(a(b(b(b(x''))))), a(y''))
F(x, a(a(b(b(y))))) -> F(a(a(a(b(b(b(x)))))), y)
F(a(b(x'''')), a(y''')) -> F(b(x''''), a(a(y''')))


Rules:


f(x, a(a(b(b(y))))) -> f(a(a(a(b(b(b(x)))))), y)
f(a(x), y) -> f(x, a(y))
f(b(x), y) -> f(x, b(y))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

F(b(x''), b(y'')) -> F(x'', b(b(y'')))
eight new Dependency Pairs are created:

F(b(a(a(a(b(b(b(x''''))))))), b(y'''')) -> F(a(a(a(b(b(b(x'''')))))), b(b(y'''')))
F(b(b(x'''')), b(y'''')) -> F(b(x''''), b(b(y'''')))
F(b(a(a(a(a(b(b(b(x'''''')))))))), b(y''')) -> F(a(a(a(a(b(b(b(x''''''))))))), b(b(y''')))
F(b(a(b(x''''''))), b(y''')) -> F(a(b(x'''''')), b(b(y''')))
F(b(a(a(x'''''''))), b(y''')) -> F(a(a(x''''''')), b(b(y''')))
F(b(a(a(a(x'''''''')))), b(y''')) -> F(a(a(a(x''''''''))), b(b(y''')))
F(b(a(a(a(a(a(b(b(b(x''''''''))))))))), b(y''')) -> F(a(a(a(a(a(b(b(b(x'''''''')))))))), b(b(y''')))
F(b(a(a(b(x'''''''')))), b(y''')) -> F(a(a(b(x''''''''))), b(b(y''')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Inst
           →DP Problem 2
Inst
             ...
               →DP Problem 6
Forward Instantiation Transformation


Dependency Pairs:

F(b(a(a(b(x'''''''')))), b(y''')) -> F(a(a(b(x''''''''))), b(b(y''')))
F(b(a(a(a(a(a(b(b(b(x''''''''))))))))), b(y''')) -> F(a(a(a(a(a(b(b(b(x'''''''')))))))), b(b(y''')))
F(b(a(a(a(x'''''''')))), b(y''')) -> F(a(a(a(x''''''''))), b(b(y''')))
F(b(a(a(x'''''''))), b(y''')) -> F(a(a(x''''''')), b(b(y''')))
F(b(a(b(x''''''))), b(y''')) -> F(a(b(x'''''')), b(b(y''')))
F(b(a(a(a(a(b(b(b(x'''''')))))))), b(y''')) -> F(a(a(a(a(b(b(b(x''''''))))))), b(b(y''')))
F(b(b(x'''')), b(y'''')) -> F(b(x''''), b(b(y'''')))
F(b(a(a(a(b(b(b(x''''))))))), b(y'''')) -> F(a(a(a(b(b(b(x'''')))))), b(b(y'''')))
F(a(a(b(x''''''))), b(y''')) -> F(a(b(x'''''')), a(b(y''')))
F(a(a(a(a(a(b(b(b(x'''''')))))))), b(y''')) -> F(a(a(a(a(b(b(b(x''''''))))))), a(b(y''')))
F(a(a(a(x''''''))), b(y''')) -> F(a(a(x'''''')), a(b(y''')))
F(b(x'), a(b(y''''))) -> F(x', b(a(b(y''''))))
F(a(b(x'''')), b(y''')) -> F(b(x''''), a(b(y''')))
F(a(b(x'''')), a(y''')) -> F(b(x''''), a(a(y''')))
F(a(a(a(a(b(b(b(x''''))))))), a(y'''')) -> F(a(a(a(b(b(b(x'''')))))), a(a(y'''')))
F(a(a(x'''')), a(y'''')) -> F(a(x''''), a(a(y'''')))
F(a(a(a(a(b(b(b(x''''))))))), b(y'''')) -> F(a(a(a(b(b(b(x'''')))))), a(b(y'''')))
F(b(x'), a(a(y''''))) -> F(x', b(a(a(y''''))))
F(a(x'''), a(b(b(y''')))) -> F(x''', a(a(b(b(y''')))))
F(x, a(a(b(b(y))))) -> F(a(a(a(b(b(b(x)))))), y)
F(a(a(a(b(b(b(x'')))))), y'') -> F(a(a(b(b(b(x''))))), a(y''))
F(a(a(x''''')), b(b(y'''''))) -> F(a(x'''''), a(b(b(y'''''))))


Rules:


f(x, a(a(b(b(y))))) -> f(a(a(a(b(b(b(x)))))), y)
f(a(x), y) -> f(x, a(y))
f(b(x), y) -> f(x, b(y))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

F(b(x'), a(a(y''''))) -> F(x', b(a(a(y''''))))
14 new Dependency Pairs are created:

F(b(a(a(a(b(b(b(x''''))))))), a(a(y'''''))) -> F(a(a(a(b(b(b(x'''')))))), b(a(a(y'''''))))
F(b(a(a(a(a(b(b(b(x'''''')))))))), a(a(y''''''))) -> F(a(a(a(a(b(b(b(x''''''))))))), b(a(a(y''''''))))
F(b(a(b(x''''''))), a(a(y''''''))) -> F(a(b(x'''''')), b(a(a(y''''''))))
F(b(a(a(a(x'''''''')))), a(a(y''''''))) -> F(a(a(a(x''''''''))), b(a(a(y''''''))))
F(b(a(a(a(a(a(b(b(b(x''''''''))))))))), a(a(y''''''))) -> F(a(a(a(a(a(b(b(b(x'''''''')))))))), b(a(a(y''''''))))
F(b(a(a(b(x'''''''')))), a(a(y''''''))) -> F(a(a(b(x''''''''))), b(a(a(y''''''))))
F(b(b(a(a(a(b(b(b(x'''''')))))))), a(a(y''''''))) -> F(b(a(a(a(b(b(b(x''''''))))))), b(a(a(y''''''))))
F(b(b(b(x''''''))), a(a(y''''''))) -> F(b(b(x'''''')), b(a(a(y''''''))))
F(b(b(a(a(a(a(b(b(b(x''''''''))))))))), a(a(y''''''))) -> F(b(a(a(a(a(b(b(b(x'''''''')))))))), b(a(a(y''''''))))
F(b(b(a(b(x'''''''')))), a(a(y''''''))) -> F(b(a(b(x''''''''))), b(a(a(y''''''))))
F(b(b(a(a(x''''''''')))), a(a(y''''''))) -> F(b(a(a(x'''''''''))), b(a(a(y''''''))))
F(b(b(a(a(a(x''''''''''))))), a(a(y''''''))) -> F(b(a(a(a(x'''''''''')))), b(a(a(y''''''))))
F(b(b(a(a(a(a(a(b(b(b(x'''''''''')))))))))), a(a(y''''''))) -> F(b(a(a(a(a(a(b(b(b(x''''''''''))))))))), b(a(a(y''''''))))
F(b(b(a(a(b(x''''''''''))))), a(a(y''''''))) -> F(b(a(a(b(x'''''''''')))), b(a(a(y''''''))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Inst
           →DP Problem 2
Inst
             ...
               →DP Problem 7
Forward Instantiation Transformation


Dependency Pairs:

F(b(b(a(a(b(x''''''''''))))), a(a(y''''''))) -> F(b(a(a(b(x'''''''''')))), b(a(a(y''''''))))
F(b(b(a(a(a(a(a(b(b(b(x'''''''''')))))))))), a(a(y''''''))) -> F(b(a(a(a(a(a(b(b(b(x''''''''''))))))))), b(a(a(y''''''))))
F(b(b(a(a(a(x''''''''''))))), a(a(y''''''))) -> F(b(a(a(a(x'''''''''')))), b(a(a(y''''''))))
F(b(b(a(a(x''''''''')))), a(a(y''''''))) -> F(b(a(a(x'''''''''))), b(a(a(y''''''))))
F(b(b(a(b(x'''''''')))), a(a(y''''''))) -> F(b(a(b(x''''''''))), b(a(a(y''''''))))
F(b(b(a(a(a(a(b(b(b(x''''''''))))))))), a(a(y''''''))) -> F(b(a(a(a(a(b(b(b(x'''''''')))))))), b(a(a(y''''''))))
F(b(b(b(x''''''))), a(a(y''''''))) -> F(b(b(x'''''')), b(a(a(y''''''))))
F(b(b(a(a(a(b(b(b(x'''''')))))))), a(a(y''''''))) -> F(b(a(a(a(b(b(b(x''''''))))))), b(a(a(y''''''))))
F(b(a(a(b(x'''''''')))), a(a(y''''''))) -> F(a(a(b(x''''''''))), b(a(a(y''''''))))
F(b(a(a(a(a(a(b(b(b(x''''''''))))))))), a(a(y''''''))) -> F(a(a(a(a(a(b(b(b(x'''''''')))))))), b(a(a(y''''''))))
F(b(a(a(a(x'''''''')))), a(a(y''''''))) -> F(a(a(a(x''''''''))), b(a(a(y''''''))))
F(b(a(a(a(a(a(b(b(b(x''''''''))))))))), b(y''')) -> F(a(a(a(a(a(b(b(b(x'''''''')))))))), b(b(y''')))
F(b(a(a(a(x'''''''')))), b(y''')) -> F(a(a(a(x''''''''))), b(b(y''')))
F(b(a(a(x'''''''))), b(y''')) -> F(a(a(x''''''')), b(b(y''')))
F(b(a(b(x''''''))), b(y''')) -> F(a(b(x'''''')), b(b(y''')))
F(b(a(a(a(a(b(b(b(x'''''')))))))), b(y''')) -> F(a(a(a(a(b(b(b(x''''''))))))), b(b(y''')))
F(b(b(x'''')), b(y'''')) -> F(b(x''''), b(b(y'''')))
F(b(a(a(a(b(b(b(x''''))))))), b(y'''')) -> F(a(a(a(b(b(b(x'''')))))), b(b(y'''')))
F(a(a(b(x''''''))), b(y''')) -> F(a(b(x'''''')), a(b(y''')))
F(a(a(a(a(a(b(b(b(x'''''')))))))), b(y''')) -> F(a(a(a(a(b(b(b(x''''''))))))), a(b(y''')))
F(b(x'), a(b(y''''))) -> F(x', b(a(b(y''''))))
F(a(b(x'''')), b(y''')) -> F(b(x''''), a(b(y''')))
F(b(a(b(x''''''))), a(a(y''''''))) -> F(a(b(x'''''')), b(a(a(y''''''))))
F(a(a(a(a(b(b(b(x''''))))))), b(y'''')) -> F(a(a(a(b(b(b(x'''')))))), a(b(y'''')))
F(b(a(a(a(a(b(b(b(x'''''')))))))), a(a(y''''''))) -> F(a(a(a(a(b(b(b(x''''''))))))), b(a(a(y''''''))))
F(a(a(a(x''''''))), b(y''')) -> F(a(a(x'''''')), a(b(y''')))
F(b(a(a(a(b(b(b(x''''))))))), a(a(y'''''))) -> F(a(a(a(b(b(b(x'''')))))), b(a(a(y'''''))))
F(a(b(x'''')), a(y''')) -> F(b(x''''), a(a(y''')))
F(a(a(a(a(b(b(b(x''''))))))), a(y'''')) -> F(a(a(a(b(b(b(x'''')))))), a(a(y'''')))
F(a(a(x'''')), a(y'''')) -> F(a(x''''), a(a(y'''')))
F(a(x'''), a(b(b(y''')))) -> F(x''', a(a(b(b(y''')))))
F(x, a(a(b(b(y))))) -> F(a(a(a(b(b(b(x)))))), y)
F(a(a(a(b(b(b(x'')))))), y'') -> F(a(a(b(b(b(x''))))), a(y''))
F(a(a(x''''')), b(b(y'''''))) -> F(a(x'''''), a(b(b(y'''''))))
F(b(a(a(b(x'''''''')))), b(y''')) -> F(a(a(b(x''''''''))), b(b(y''')))


Rules:


f(x, a(a(b(b(y))))) -> f(a(a(a(b(b(b(x)))))), y)
f(a(x), y) -> f(x, a(y))
f(b(x), y) -> f(x, b(y))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

F(b(x'), a(b(y''''))) -> F(x', b(a(b(y''''))))
14 new Dependency Pairs are created:

F(b(a(a(a(b(b(b(x''''))))))), a(b(y'''''))) -> F(a(a(a(b(b(b(x'''')))))), b(a(b(y'''''))))
F(b(a(a(a(a(b(b(b(x'''''')))))))), a(b(y''''''))) -> F(a(a(a(a(b(b(b(x''''''))))))), b(a(b(y''''''))))
F(b(a(b(x''''''))), a(b(y''''''))) -> F(a(b(x'''''')), b(a(b(y''''''))))
F(b(a(a(a(x'''''''')))), a(b(y''''''))) -> F(a(a(a(x''''''''))), b(a(b(y''''''))))
F(b(a(a(a(a(a(b(b(b(x''''''''))))))))), a(b(y''''''))) -> F(a(a(a(a(a(b(b(b(x'''''''')))))))), b(a(b(y''''''))))
F(b(a(a(b(x'''''''')))), a(b(y''''''))) -> F(a(a(b(x''''''''))), b(a(b(y''''''))))
F(b(b(a(a(a(b(b(b(x'''''')))))))), a(b(y''''''))) -> F(b(a(a(a(b(b(b(x''''''))))))), b(a(b(y''''''))))
F(b(b(b(x''''''))), a(b(y''''''))) -> F(b(b(x'''''')), b(a(b(y''''''))))
F(b(b(a(a(a(a(b(b(b(x''''''''))))))))), a(b(y''''''))) -> F(b(a(a(a(a(b(b(b(x'''''''')))))))), b(a(b(y''''''))))
F(b(b(a(b(x'''''''')))), a(b(y''''''))) -> F(b(a(b(x''''''''))), b(a(b(y''''''))))
F(b(b(a(a(x''''''''')))), a(b(y''''''))) -> F(b(a(a(x'''''''''))), b(a(b(y''''''))))
F(b(b(a(a(a(x''''''''''))))), a(b(y''''''))) -> F(b(a(a(a(x'''''''''')))), b(a(b(y''''''))))
F(b(b(a(a(a(a(a(b(b(b(x'''''''''')))))))))), a(b(y''''''))) -> F(b(a(a(a(a(a(b(b(b(x''''''''''))))))))), b(a(b(y''''''))))
F(b(b(a(a(b(x''''''''''))))), a(b(y''''''))) -> F(b(a(a(b(x'''''''''')))), b(a(b(y''''''))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Inst
           →DP Problem 2
Inst
             ...
               →DP Problem 8
Remaining Obligation(s)




The following remains to be proven:
Dependency Pairs:

F(b(b(a(a(a(a(a(b(b(b(x'''''''''')))))))))), a(a(y''''''))) -> F(b(a(a(a(a(a(b(b(b(x''''''''''))))))))), b(a(a(y''''''))))
F(b(b(a(a(a(x''''''''''))))), a(a(y''''''))) -> F(b(a(a(a(x'''''''''')))), b(a(a(y''''''))))
F(b(b(a(a(x''''''''')))), a(a(y''''''))) -> F(b(a(a(x'''''''''))), b(a(a(y''''''))))
F(b(b(a(b(x'''''''')))), a(a(y''''''))) -> F(b(a(b(x''''''''))), b(a(a(y''''''))))
F(b(b(a(a(a(a(b(b(b(x''''''''))))))))), a(a(y''''''))) -> F(b(a(a(a(a(b(b(b(x'''''''')))))))), b(a(a(y''''''))))
F(b(b(b(x''''''))), a(a(y''''''))) -> F(b(b(x'''''')), b(a(a(y''''''))))
F(b(b(a(a(a(b(b(b(x'''''')))))))), a(a(y''''''))) -> F(b(a(a(a(b(b(b(x''''''))))))), b(a(a(y''''''))))
F(b(a(a(b(x'''''''')))), a(a(y''''''))) -> F(a(a(b(x''''''''))), b(a(a(y''''''))))
F(b(a(a(a(a(a(b(b(b(x''''''''))))))))), a(a(y''''''))) -> F(a(a(a(a(a(b(b(b(x'''''''')))))))), b(a(a(y''''''))))
F(b(a(a(a(x'''''''')))), a(a(y''''''))) -> F(a(a(a(x''''''''))), b(a(a(y''''''))))
F(b(b(a(a(b(x''''''''''))))), a(b(y''''''))) -> F(b(a(a(b(x'''''''''')))), b(a(b(y''''''))))
F(b(b(a(a(a(a(a(b(b(b(x'''''''''')))))))))), a(b(y''''''))) -> F(b(a(a(a(a(a(b(b(b(x''''''''''))))))))), b(a(b(y''''''))))
F(b(b(a(a(a(x''''''''''))))), a(b(y''''''))) -> F(b(a(a(a(x'''''''''')))), b(a(b(y''''''))))
F(b(b(a(a(x''''''''')))), a(b(y''''''))) -> F(b(a(a(x'''''''''))), b(a(b(y''''''))))
F(b(b(a(b(x'''''''')))), a(b(y''''''))) -> F(b(a(b(x''''''''))), b(a(b(y''''''))))
F(b(b(a(a(a(a(b(b(b(x''''''''))))))))), a(b(y''''''))) -> F(b(a(a(a(a(b(b(b(x'''''''')))))))), b(a(b(y''''''))))
F(b(a(a(b(x'''''''')))), b(y''')) -> F(a(a(b(x''''''''))), b(b(y''')))
F(b(a(a(a(a(a(b(b(b(x''''''''))))))))), b(y''')) -> F(a(a(a(a(a(b(b(b(x'''''''')))))))), b(b(y''')))
F(b(a(b(x''''''))), b(y''')) -> F(a(b(x'''''')), b(b(y''')))
F(b(a(a(a(a(b(b(b(x'''''')))))))), b(y''')) -> F(a(a(a(a(b(b(b(x''''''))))))), b(b(y''')))
F(b(b(x'''')), b(y'''')) -> F(b(x''''), b(b(y'''')))
F(b(b(b(x''''''))), a(b(y''''''))) -> F(b(b(x'''''')), b(a(b(y''''''))))
F(b(a(a(a(x'''''''')))), b(y''')) -> F(a(a(a(x''''''''))), b(b(y''')))
F(a(a(x''''')), b(b(y'''''))) -> F(a(x'''''), a(b(b(y'''''))))
F(b(a(a(a(b(b(b(x''''))))))), b(y'''')) -> F(a(a(a(b(b(b(x'''')))))), b(b(y'''')))
F(b(b(a(a(a(b(b(b(x'''''')))))))), a(b(y''''''))) -> F(b(a(a(a(b(b(b(x''''''))))))), b(a(b(y''''''))))
F(a(a(b(x''''''))), b(y''')) -> F(a(b(x'''''')), a(b(y''')))
F(b(a(a(b(x'''''''')))), a(b(y''''''))) -> F(a(a(b(x''''''''))), b(a(b(y''''''))))
F(b(a(a(a(a(a(b(b(b(x''''''''))))))))), a(b(y''''''))) -> F(a(a(a(a(a(b(b(b(x'''''''')))))))), b(a(b(y''''''))))
F(a(a(a(a(a(b(b(b(x'''''')))))))), b(y''')) -> F(a(a(a(a(b(b(b(x''''''))))))), a(b(y''')))
F(b(a(a(a(x'''''''')))), a(b(y''''''))) -> F(a(a(a(x''''''''))), b(a(b(y''''''))))
F(b(a(b(x''''''))), a(b(y''''''))) -> F(a(b(x'''''')), b(a(b(y''''''))))
F(b(a(a(a(a(b(b(b(x'''''')))))))), a(b(y''''''))) -> F(a(a(a(a(b(b(b(x''''''))))))), b(a(b(y''''''))))
F(b(a(a(a(b(b(b(x''''))))))), a(b(y'''''))) -> F(a(a(a(b(b(b(x'''')))))), b(a(b(y'''''))))
F(a(b(x'''')), b(y''')) -> F(b(x''''), a(b(y''')))
F(b(a(b(x''''''))), a(a(y''''''))) -> F(a(b(x'''''')), b(a(a(y''''''))))
F(a(a(a(a(b(b(b(x''''))))))), b(y'''')) -> F(a(a(a(b(b(b(x'''')))))), a(b(y'''')))
F(b(a(a(a(a(b(b(b(x'''''')))))))), a(a(y''''''))) -> F(a(a(a(a(b(b(b(x''''''))))))), b(a(a(y''''''))))
F(a(a(a(x''''''))), b(y''')) -> F(a(a(x'''''')), a(b(y''')))
F(b(a(a(a(b(b(b(x''''))))))), a(a(y'''''))) -> F(a(a(a(b(b(b(x'''')))))), b(a(a(y'''''))))
F(a(b(x'''')), a(y''')) -> F(b(x''''), a(a(y''')))
F(a(a(a(a(b(b(b(x''''))))))), a(y'''')) -> F(a(a(a(b(b(b(x'''')))))), a(a(y'''')))
F(a(a(x'''')), a(y'''')) -> F(a(x''''), a(a(y'''')))
F(a(x'''), a(b(b(y''')))) -> F(x''', a(a(b(b(y''')))))
F(x, a(a(b(b(y))))) -> F(a(a(a(b(b(b(x)))))), y)
F(a(a(a(b(b(b(x'')))))), y'') -> F(a(a(b(b(b(x''))))), a(y''))
F(b(a(a(x'''''''))), b(y''')) -> F(a(a(x''''''')), b(b(y''')))
F(b(b(a(a(b(x''''''''''))))), a(a(y''''''))) -> F(b(a(a(b(x'''''''''')))), b(a(a(y''''''))))


Rules:


f(x, a(a(b(b(y))))) -> f(a(a(a(b(b(b(x)))))), y)
f(a(x), y) -> f(x, a(y))
f(b(x), y) -> f(x, b(y))


Strategy:

innermost



Innermost Termination of R could not be shown.
Duration:
0:13 minutes