R
↳Removing Redundant Rules
a(f, 0) -> a(s, 0)
was used.
POL(0) = 0 POL(d) = 0 POL(s) = 0 POL(a(x1, x2)) = x1 + x2 POL(f) = 1 POL(p) = 0
R
↳RRRPolo
→TRS2
↳Dependency Pair Analysis
A(f, a(s, x)) -> A(d, a(f, a(p, a(s, x))))
A(f, a(s, x)) -> A(f, a(p, a(s, x)))
A(f, a(s, x)) -> A(p, a(s, x))
A(d, a(s, x)) -> A(s, a(s, a(d, a(p, a(s, x)))))
A(d, a(s, x)) -> A(s, a(d, a(p, a(s, x))))
A(d, a(s, x)) -> A(d, a(p, a(s, x)))
A(d, a(s, x)) -> A(p, a(s, x))
R
↳RRRPolo
→TRS2
↳DPs
→DP Problem 1
↳Usable Rules (Innermost)
→DP Problem 2
↳UsableRules
A(d, a(s, x)) -> A(d, a(p, a(s, x)))
a(f, a(s, x)) -> a(d, a(f, a(p, a(s, x))))
a(p, a(s, x)) -> x
a(d, a(s, x)) -> a(s, a(s, a(d, a(p, a(s, x)))))
a(d, 0) -> 0
innermost
R
↳RRRPolo
→TRS2
↳DPs
→DP Problem 1
↳UsableRules
...
→DP Problem 3
↳A-Transformation
→DP Problem 2
↳UsableRules
A(d, a(s, x)) -> A(d, a(p, a(s, x)))
a(p, a(s, x)) -> x
innermost
R
↳RRRPolo
→TRS2
↳DPs
→DP Problem 1
↳UsableRules
...
→DP Problem 4
↳Modular Removal of Rules
→DP Problem 2
↳UsableRules
D(s(x)) -> D(p(s(x)))
p(s(x)) -> x
innermost
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
p(s(x)) -> x
POL(D(x1)) = 1 + x1 POL(s(x1)) = 1 + x1 POL(p(x1)) = x1
p(s(x)) -> x
R
↳RRRPolo
→TRS2
↳DPs
→DP Problem 1
↳UsableRules
...
→DP Problem 5
↳Dependency Graph
→DP Problem 2
↳UsableRules
D(s(x)) -> D(p(s(x)))
none
innermost
R
↳RRRPolo
→TRS2
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳Usable Rules (Innermost)
A(f, a(s, x)) -> A(f, a(p, a(s, x)))
a(f, a(s, x)) -> a(d, a(f, a(p, a(s, x))))
a(p, a(s, x)) -> x
a(d, a(s, x)) -> a(s, a(s, a(d, a(p, a(s, x)))))
a(d, 0) -> 0
innermost
R
↳RRRPolo
→TRS2
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
...
→DP Problem 6
↳A-Transformation
A(f, a(s, x)) -> A(f, a(p, a(s, x)))
a(p, a(s, x)) -> x
innermost
R
↳RRRPolo
→TRS2
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
...
→DP Problem 7
↳Modular Removal of Rules
F(s(x)) -> F(p(s(x)))
p(s(x)) -> x
innermost
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
p(s(x)) -> x
POL(s(x1)) = 1 + x1 POL(F(x1)) = 1 + x1 POL(p(x1)) = x1
p(s(x)) -> x
R
↳RRRPolo
→TRS2
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
...
→DP Problem 8
↳Dependency Graph
F(s(x)) -> F(p(s(x)))
none
innermost