R
↳Dependency Pair Analysis
A(f, 0) -> A(s, 0)
A(d, a(s, x)) -> A(s, a(s, a(d, a(p, a(s, x)))))
A(d, a(s, x)) -> A(s, a(d, a(p, a(s, x))))
A(d, a(s, x)) -> A(d, a(p, a(s, x)))
A(d, a(s, x)) -> A(p, a(s, x))
A(f, a(s, x)) -> A(d, a(f, a(p, a(s, x))))
A(f, a(s, x)) -> A(f, a(p, a(s, x)))
A(f, a(s, x)) -> A(p, a(s, x))
R
↳DPs
→DP Problem 1
↳Rewriting Transformation
→DP Problem 2
↳Remaining
A(d, a(s, x)) -> A(d, a(p, a(s, x)))
a(f, 0) -> a(s, 0)
a(d, 0) -> 0
a(d, a(s, x)) -> a(s, a(s, a(d, a(p, a(s, x)))))
a(f, a(s, x)) -> a(d, a(f, a(p, a(s, x))))
a(p, a(s, x)) -> x
innermost
one new Dependency Pair is created:
A(d, a(s, x)) -> A(d, a(p, a(s, x)))
A(d, a(s, x)) -> A(d, x)
R
↳DPs
→DP Problem 1
↳Rw
→DP Problem 3
↳Forward Instantiation Transformation
→DP Problem 2
↳Remaining
A(d, a(s, x)) -> A(d, x)
a(f, 0) -> a(s, 0)
a(d, 0) -> 0
a(d, a(s, x)) -> a(s, a(s, a(d, a(p, a(s, x)))))
a(f, a(s, x)) -> a(d, a(f, a(p, a(s, x))))
a(p, a(s, x)) -> x
innermost
one new Dependency Pair is created:
A(d, a(s, x)) -> A(d, x)
A(d, a(s, a(s, x''))) -> A(d, a(s, x''))
R
↳DPs
→DP Problem 1
↳Rw
→DP Problem 2
↳Remaining Obligation(s)
A(d, a(s, a(s, x''))) -> A(d, a(s, x''))
a(f, 0) -> a(s, 0)
a(d, 0) -> 0
a(d, a(s, x)) -> a(s, a(s, a(d, a(p, a(s, x)))))
a(f, a(s, x)) -> a(d, a(f, a(p, a(s, x))))
a(p, a(s, x)) -> x
innermost
A(f, a(s, x)) -> A(f, a(p, a(s, x)))
a(f, 0) -> a(s, 0)
a(d, 0) -> 0
a(d, a(s, x)) -> a(s, a(s, a(d, a(p, a(s, x)))))
a(f, a(s, x)) -> a(d, a(f, a(p, a(s, x))))
a(p, a(s, x)) -> x
innermost
R
↳DPs
→DP Problem 1
↳Rw
→DP Problem 2
↳Remaining Obligation(s)
A(d, a(s, a(s, x''))) -> A(d, a(s, x''))
a(f, 0) -> a(s, 0)
a(d, 0) -> 0
a(d, a(s, x)) -> a(s, a(s, a(d, a(p, a(s, x)))))
a(f, a(s, x)) -> a(d, a(f, a(p, a(s, x))))
a(p, a(s, x)) -> x
innermost
A(f, a(s, x)) -> A(f, a(p, a(s, x)))
a(f, 0) -> a(s, 0)
a(d, 0) -> 0
a(d, a(s, x)) -> a(s, a(s, a(d, a(p, a(s, x)))))
a(f, a(s, x)) -> a(d, a(f, a(p, a(s, x))))
a(p, a(s, x)) -> x
innermost