R
↳Dependency Pair Analysis
F(a, x) -> F(b, f(c, x))
F(a, x) -> F(c, x)
F(a, f(b, x)) -> F(b, f(a, x))
F(a, f(b, x)) -> F(a, x)
F(d, f(c, x)) -> F(d, f(a, x))
F(d, f(c, x)) -> F(a, x)
F(a, f(c, x)) -> F(c, f(a, x))
F(a, f(c, x)) -> F(a, x)
R
↳DPs
→DP Problem 1
↳Usable Rules (Innermost)
→DP Problem 2
↳UsableRules
F(a, f(c, x)) -> F(a, x)
F(a, f(b, x)) -> F(a, x)
f(a, x) -> f(b, f(c, x))
f(a, f(b, x)) -> f(b, f(a, x))
f(d, f(c, x)) -> f(d, f(a, x))
f(a, f(c, x)) -> f(c, f(a, x))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 3
↳A-Transformation
→DP Problem 2
↳UsableRules
F(a, f(c, x)) -> F(a, x)
F(a, f(b, x)) -> F(a, x)
none
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 3
↳ATrans
...
→DP Problem 4
↳Size-Change Principle
→DP Problem 2
↳UsableRules
A(c(x)) -> A(x)
A(b(x)) -> A(x)
none
innermost
|
|
trivial
c(x1) -> c(x1)
b(x1) -> b(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳Usable Rules (Innermost)
F(d, f(c, x)) -> F(d, f(a, x))
f(a, x) -> f(b, f(c, x))
f(a, f(b, x)) -> f(b, f(a, x))
f(d, f(c, x)) -> f(d, f(a, x))
f(a, f(c, x)) -> f(c, f(a, x))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 5
↳A-Transformation
F(d, f(c, x)) -> F(d, f(a, x))
f(a, f(b, x)) -> f(b, f(a, x))
f(a, x) -> f(b, f(c, x))
f(a, f(c, x)) -> f(c, f(a, x))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 5
↳ATrans
...
→DP Problem 6
↳Negative Polynomial Order
D(c(x)) -> D(a(x))
a(b(x)) -> b(a(x))
a(x) -> b(c(x))
a(c(x)) -> c(a(x))
innermost
D(c(x)) -> D(a(x))
a(x) -> b(c(x))
a(b(x)) -> b(a(x))
a(c(x)) -> c(a(x))
POL( D(x1) ) = x1
POL( c(x1) ) = x1 + 1
POL( a(x1) ) = x1
POL( b(x1) ) = 0
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 5
↳ATrans
...
→DP Problem 7
↳Dependency Graph
a(b(x)) -> b(a(x))
a(x) -> b(c(x))
a(c(x)) -> c(a(x))
innermost