R
↳Dependency Pair Analysis
F(a, x) -> F(b, f(c, x))
F(a, x) -> F(c, x)
F(a, f(b, x)) -> F(b, f(a, x))
F(a, f(b, x)) -> F(a, x)
F(d, f(c, x)) -> F(d, f(a, x))
F(d, f(c, x)) -> F(a, x)
F(a, f(c, x)) -> F(c, f(a, x))
F(a, f(c, x)) -> F(a, x)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
→DP Problem 2
↳Remaining
F(a, f(c, x)) -> F(a, x)
F(a, f(b, x)) -> F(a, x)
f(a, x) -> f(b, f(c, x))
f(a, f(b, x)) -> f(b, f(a, x))
f(d, f(c, x)) -> f(d, f(a, x))
f(a, f(c, x)) -> f(c, f(a, x))
innermost
two new Dependency Pairs are created:
F(a, f(b, x)) -> F(a, x)
F(a, f(b, f(b, x''))) -> F(a, f(b, x''))
F(a, f(b, f(c, x''))) -> F(a, f(c, x''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳Forward Instantiation Transformation
→DP Problem 2
↳Remaining
F(a, f(b, f(c, x''))) -> F(a, f(c, x''))
F(a, f(b, f(b, x''))) -> F(a, f(b, x''))
F(a, f(c, x)) -> F(a, x)
f(a, x) -> f(b, f(c, x))
f(a, f(b, x)) -> f(b, f(a, x))
f(d, f(c, x)) -> f(d, f(a, x))
f(a, f(c, x)) -> f(c, f(a, x))
innermost
three new Dependency Pairs are created:
F(a, f(c, x)) -> F(a, x)
F(a, f(c, f(c, x''))) -> F(a, f(c, x''))
F(a, f(c, f(b, f(b, x'''')))) -> F(a, f(b, f(b, x'''')))
F(a, f(c, f(b, f(c, x'''')))) -> F(a, f(b, f(c, x'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 4
↳Argument Filtering and Ordering
→DP Problem 2
↳Remaining
F(a, f(c, f(b, f(c, x'''')))) -> F(a, f(b, f(c, x'''')))
F(a, f(b, f(b, x''))) -> F(a, f(b, x''))
F(a, f(c, f(b, f(b, x'''')))) -> F(a, f(b, f(b, x'''')))
F(a, f(c, f(c, x''))) -> F(a, f(c, x''))
F(a, f(b, f(c, x''))) -> F(a, f(c, x''))
f(a, x) -> f(b, f(c, x))
f(a, f(b, x)) -> f(b, f(a, x))
f(d, f(c, x)) -> f(d, f(a, x))
f(a, f(c, x)) -> f(c, f(a, x))
innermost
F(a, f(c, f(b, f(c, x'''')))) -> F(a, f(b, f(c, x'''')))
F(a, f(c, f(b, f(b, x'''')))) -> F(a, f(b, f(b, x'''')))
F(a, f(c, f(c, x''))) -> F(a, f(c, x''))
f(a, x) -> f(b, f(c, x))
f(a, f(b, x)) -> f(b, f(a, x))
f(d, f(c, x)) -> f(d, f(a, x))
f(a, f(c, x)) -> f(c, f(a, x))
POL(c) = 1 POL(b) = 0 POL(d) = 1 POL(a) = 1 POL(F(x1, x2)) = 1 + x1 + x2 POL(f(x1, x2)) = x1 + x2
F(x1, x2) -> F(x1, x2)
f(x1, x2) -> f(x1, x2)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 5
↳Dependency Graph
→DP Problem 2
↳Remaining
F(a, f(b, f(b, x''))) -> F(a, f(b, x''))
F(a, f(b, f(c, x''))) -> F(a, f(c, x''))
f(a, x) -> f(b, f(c, x))
f(a, f(b, x)) -> f(b, f(a, x))
f(d, f(c, x)) -> f(d, f(a, x))
f(a, f(c, x)) -> f(c, f(a, x))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Remaining Obligation(s)
F(a, f(b, f(b, x''))) -> F(a, f(b, x''))
f(a, x) -> f(b, f(c, x))
f(a, f(b, x)) -> f(b, f(a, x))
f(d, f(c, x)) -> f(d, f(a, x))
f(a, f(c, x)) -> f(c, f(a, x))
innermost
F(d, f(c, x)) -> F(d, f(a, x))
f(a, x) -> f(b, f(c, x))
f(a, f(b, x)) -> f(b, f(a, x))
f(d, f(c, x)) -> f(d, f(a, x))
f(a, f(c, x)) -> f(c, f(a, x))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Remaining Obligation(s)
F(a, f(b, f(b, x''))) -> F(a, f(b, x''))
f(a, x) -> f(b, f(c, x))
f(a, f(b, x)) -> f(b, f(a, x))
f(d, f(c, x)) -> f(d, f(a, x))
f(a, f(c, x)) -> f(c, f(a, x))
innermost
F(d, f(c, x)) -> F(d, f(a, x))
f(a, x) -> f(b, f(c, x))
f(a, f(b, x)) -> f(b, f(a, x))
f(d, f(c, x)) -> f(d, f(a, x))
f(a, f(c, x)) -> f(c, f(a, x))
innermost