R
↳Dependency Pair Analysis
F(a, x) -> F(b, f(c, x))
F(a, x) -> F(c, x)
F(a, f(b, x)) -> F(b, f(a, x))
F(a, f(b, x)) -> F(a, x)
F(d, f(c, x)) -> F(d, f(a, x))
F(d, f(c, x)) -> F(a, x)
F(a, f(c, x)) -> F(c, f(a, x))
F(a, f(c, x)) -> F(a, x)
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
→DP Problem 2
↳Nar
F(a, f(c, x)) -> F(a, x)
F(a, f(b, x)) -> F(a, x)
f(a, x) -> f(b, f(c, x))
f(a, f(b, x)) -> f(b, f(a, x))
f(d, f(c, x)) -> f(d, f(a, x))
f(a, f(c, x)) -> f(c, f(a, x))
innermost
F(a, f(c, x)) -> F(a, x)
F(a, f(b, x)) -> F(a, x)
F(x1, x2) -> F(x1, x2)
f(x1, x2) -> f(x1, x2)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 3
↳Dependency Graph
→DP Problem 2
↳Nar
f(a, x) -> f(b, f(c, x))
f(a, f(b, x)) -> f(b, f(a, x))
f(d, f(c, x)) -> f(d, f(a, x))
f(a, f(c, x)) -> f(c, f(a, x))
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Narrowing Transformation
F(d, f(c, x)) -> F(d, f(a, x))
f(a, x) -> f(b, f(c, x))
f(a, f(b, x)) -> f(b, f(a, x))
f(d, f(c, x)) -> f(d, f(a, x))
f(a, f(c, x)) -> f(c, f(a, x))
innermost
three new Dependency Pairs are created:
F(d, f(c, x)) -> F(d, f(a, x))
F(d, f(c, x'')) -> F(d, f(b, f(c, x'')))
F(d, f(c, f(b, x''))) -> F(d, f(b, f(a, x'')))
F(d, f(c, f(c, x''))) -> F(d, f(c, f(a, x'')))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Nar
→DP Problem 4
↳Narrowing Transformation
F(d, f(c, f(c, x''))) -> F(d, f(c, f(a, x'')))
F(d, f(c, f(b, x''))) -> F(d, f(b, f(a, x'')))
F(d, f(c, x'')) -> F(d, f(b, f(c, x'')))
f(a, x) -> f(b, f(c, x))
f(a, f(b, x)) -> f(b, f(a, x))
f(d, f(c, x)) -> f(d, f(a, x))
f(a, f(c, x)) -> f(c, f(a, x))
innermost
no new Dependency Pairs are created.
F(d, f(c, x'')) -> F(d, f(b, f(c, x'')))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Nar
→DP Problem 4
↳Nar
...
→DP Problem 5
↳Remaining Obligation(s)
F(d, f(c, f(b, x''))) -> F(d, f(b, f(a, x'')))
F(d, f(c, f(c, x''))) -> F(d, f(c, f(a, x'')))
f(a, x) -> f(b, f(c, x))
f(a, f(b, x)) -> f(b, f(a, x))
f(d, f(c, x)) -> f(d, f(a, x))
f(a, f(c, x)) -> f(c, f(a, x))
innermost