R
↳Dependency Pair Analysis
F(a, f(b, x)) -> F(a, f(a, f(a, x)))
F(a, f(b, x)) -> F(a, f(a, x))
F(a, f(b, x)) -> F(a, x)
F(b, f(a, x)) -> F(b, f(b, f(b, x)))
F(b, f(a, x)) -> F(b, f(b, x))
F(b, f(a, x)) -> F(b, x)
R
↳DPs
→DP Problem 1
↳Narrowing Transformation
→DP Problem 2
↳Remaining
F(a, f(b, x)) -> F(a, x)
F(a, f(b, x)) -> F(a, f(a, x))
F(a, f(b, x)) -> F(a, f(a, f(a, x)))
f(a, f(b, x)) -> f(a, f(a, f(a, x)))
f(b, f(a, x)) -> f(b, f(b, f(b, x)))
innermost
one new Dependency Pair is created:
F(a, f(b, x)) -> F(a, f(a, f(a, x)))
F(a, f(b, f(b, x''))) -> F(a, f(a, f(a, f(a, f(a, x'')))))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 3
↳Narrowing Transformation
→DP Problem 2
↳Remaining
F(a, f(b, f(b, x''))) -> F(a, f(a, f(a, f(a, f(a, x'')))))
F(a, f(b, x)) -> F(a, f(a, x))
F(a, f(b, x)) -> F(a, x)
f(a, f(b, x)) -> f(a, f(a, f(a, x)))
f(b, f(a, x)) -> f(b, f(b, f(b, x)))
innermost
one new Dependency Pair is created:
F(a, f(b, x)) -> F(a, f(a, x))
F(a, f(b, f(b, x''))) -> F(a, f(a, f(a, f(a, x''))))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 3
↳Nar
...
→DP Problem 4
↳Narrowing Transformation
→DP Problem 2
↳Remaining
F(a, f(b, f(b, x''))) -> F(a, f(a, f(a, f(a, x''))))
F(a, f(b, x)) -> F(a, x)
F(a, f(b, f(b, x''))) -> F(a, f(a, f(a, f(a, f(a, x'')))))
f(a, f(b, x)) -> f(a, f(a, f(a, x)))
f(b, f(a, x)) -> f(b, f(b, f(b, x)))
innermost
one new Dependency Pair is created:
F(a, f(b, f(b, x''))) -> F(a, f(a, f(a, f(a, f(a, x'')))))
F(a, f(b, f(b, f(b, x')))) -> F(a, f(a, f(a, f(a, f(a, f(a, f(a, x')))))))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 3
↳Nar
...
→DP Problem 5
↳Narrowing Transformation
→DP Problem 2
↳Remaining
F(a, f(b, f(b, f(b, x')))) -> F(a, f(a, f(a, f(a, f(a, f(a, f(a, x')))))))
F(a, f(b, x)) -> F(a, x)
F(a, f(b, f(b, x''))) -> F(a, f(a, f(a, f(a, x''))))
f(a, f(b, x)) -> f(a, f(a, f(a, x)))
f(b, f(a, x)) -> f(b, f(b, f(b, x)))
innermost
one new Dependency Pair is created:
F(a, f(b, f(b, x''))) -> F(a, f(a, f(a, f(a, x''))))
F(a, f(b, f(b, f(b, x')))) -> F(a, f(a, f(a, f(a, f(a, f(a, x'))))))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 3
↳Nar
...
→DP Problem 6
↳Forward Instantiation Transformation
→DP Problem 2
↳Remaining
F(a, f(b, f(b, f(b, x')))) -> F(a, f(a, f(a, f(a, f(a, f(a, x'))))))
F(a, f(b, x)) -> F(a, x)
F(a, f(b, f(b, f(b, x')))) -> F(a, f(a, f(a, f(a, f(a, f(a, f(a, x')))))))
f(a, f(b, x)) -> f(a, f(a, f(a, x)))
f(b, f(a, x)) -> f(b, f(b, f(b, x)))
innermost
two new Dependency Pairs are created:
F(a, f(b, x)) -> F(a, x)
F(a, f(b, f(b, x''))) -> F(a, f(b, x''))
F(a, f(b, f(b, f(b, f(b, x'''))))) -> F(a, f(b, f(b, f(b, x'''))))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 3
↳Nar
...
→DP Problem 7
↳Polynomial Ordering
→DP Problem 2
↳Remaining
F(a, f(b, f(b, f(b, f(b, x'''))))) -> F(a, f(b, f(b, f(b, x'''))))
F(a, f(b, f(b, x''))) -> F(a, f(b, x''))
F(a, f(b, f(b, f(b, x')))) -> F(a, f(a, f(a, f(a, f(a, f(a, f(a, x')))))))
F(a, f(b, f(b, f(b, x')))) -> F(a, f(a, f(a, f(a, f(a, f(a, x'))))))
f(a, f(b, x)) -> f(a, f(a, f(a, x)))
f(b, f(a, x)) -> f(b, f(b, f(b, x)))
innermost
F(a, f(b, f(b, f(b, x')))) -> F(a, f(a, f(a, f(a, f(a, f(a, f(a, x')))))))
F(a, f(b, f(b, f(b, x')))) -> F(a, f(a, f(a, f(a, f(a, f(a, x'))))))
f(a, f(b, x)) -> f(a, f(a, f(a, x)))
f(b, f(a, x)) -> f(b, f(b, f(b, x)))
POL(b) = 1 POL(a) = 0 POL(f(x1, x2)) = x1 POL(F(x1, x2)) = x2
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Remaining Obligation(s)
F(a, f(b, f(b, f(b, f(b, x'''))))) -> F(a, f(b, f(b, f(b, x'''))))
F(a, f(b, f(b, x''))) -> F(a, f(b, x''))
f(a, f(b, x)) -> f(a, f(a, f(a, x)))
f(b, f(a, x)) -> f(b, f(b, f(b, x)))
innermost
F(b, f(a, x)) -> F(b, x)
F(b, f(a, x)) -> F(b, f(b, x))
F(b, f(a, x)) -> F(b, f(b, f(b, x)))
f(a, f(b, x)) -> f(a, f(a, f(a, x)))
f(b, f(a, x)) -> f(b, f(b, f(b, x)))
innermost
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Remaining Obligation(s)
F(a, f(b, f(b, f(b, f(b, x'''))))) -> F(a, f(b, f(b, f(b, x'''))))
F(a, f(b, f(b, x''))) -> F(a, f(b, x''))
f(a, f(b, x)) -> f(a, f(a, f(a, x)))
f(b, f(a, x)) -> f(b, f(b, f(b, x)))
innermost
F(b, f(a, x)) -> F(b, x)
F(b, f(a, x)) -> F(b, f(b, x))
F(b, f(a, x)) -> F(b, f(b, f(b, x)))
f(a, f(b, x)) -> f(a, f(a, f(a, x)))
f(b, f(a, x)) -> f(b, f(b, f(b, x)))
innermost