f(a, f(

R

↳Dependency Pair Analysis

F(a, f(x, a)) -> F(f(a, f(f(a, a),x)), a)

F(a, f(x, a)) -> F(a, f(f(a, a),x))

F(a, f(x, a)) -> F(f(a, a),x)

F(a, f(x, a)) -> F(a, a)

Furthermore,

R

↳DPs

→DP Problem 1

↳Argument Filtering and Ordering

**F(a, f( x, a)) -> F(f(a, a), x)**

f(a, f(x, a)) -> f(f(a, f(f(a, a),x)), a)

innermost

The following dependency pair can be strictly oriented:

F(a, f(x, a)) -> F(f(a, a),x)

The following usable rule for innermost can be oriented:

f(a, f(x, a)) -> f(f(a, f(f(a, a),x)), a)

Used ordering: Polynomial ordering with Polynomial interpretation:

_{ }^{ }POL(a)= 1 _{ }^{ }_{ }^{ }POL(f)= 0 _{ }^{ }

resulting in one new DP problem.

Used Argument Filtering System:

F(x,_{1}x) ->_{2}x_{1}

f(x,_{1}x) -> f_{2}

R

↳DPs

→DP Problem 1

↳AFS

→DP Problem 2

↳Remaining Obligation(s)

The following remains to be proven:

**F(a, f( x, a)) -> F(a, f(f(a, a), x))**

f(a, f(x, a)) -> f(f(a, f(f(a, a),x)), a)

innermost

Duration:

0:00 minutes