R
↳Dependency Pair Analysis
F(x, f(a, a)) -> F(f(f(a, a), a), f(a, x))
F(x, f(a, a)) -> F(f(a, a), a)
F(x, f(a, a)) -> F(a, x)
R
↳DPs
→DP Problem 1
↳Semantic Labelling
F(x, f(a, a)) -> F(a, x)
F(x, f(a, a)) -> F(f(f(a, a), a), f(a, x))
f(x, f(a, a)) -> f(f(f(a, a), a), f(a, x))
innermost
F(x0, x1) = 1 f(x0, x1) = 0 a = 1
R
↳DPs
→DP Problem 1
↳SemLab
→DP Problem 2
↳Modular Removal of Rules
F10(x, f11(a, a)) -> F00(f01(f11(a, a), a), f11(a, x))
F00(x, f11(a, a)) -> F10(a, x)
f00(x, f11(a, a)) -> f00(f01(f11(a, a), a), f10(a, x))
f10(x, f11(a, a)) -> f00(f01(f11(a, a), a), f11(a, x))
innermost
POL(f_11(x1, x2)) = x1 + x2 POL(F_00(x1, x2)) = x1 + x2 POL(f_01(x1, x2)) = x1 + x2 POL(F_10(x1, x2)) = x1 + x2 POL(a) = 0
R
↳DPs
→DP Problem 1
↳SemLab
→DP Problem 2
↳MRR
...
→DP Problem 3
↳Unlabel
F00(x, f11(a, a)) -> F10(a, x)
F10(x, f11(a, a)) -> F00(f01(f11(a, a), a), f11(a, x))
none
innermost
R
↳DPs
→DP Problem 1
↳SemLab
→DP Problem 2
↳MRR
...
→DP Problem 4
↳Semantic Labelling
F(x, f(a, a)) -> F(f(f(a, a), a), f(a, x))
F(x, f(a, a)) -> F(a, x)
none
innermost
F(x0, x1) = 0 f(x0, x1) = 1 + x0 a = 1
R
↳DPs
→DP Problem 1
↳SemLab
→DP Problem 2
↳MRR
...
→DP Problem 5
↳Unlabel
F10(x, f11(a, a)) -> F10(f01(f11(a, a), a), f11(a, x))
none
innermost
R
↳DPs
→DP Problem 1
↳SemLab
→DP Problem 2
↳MRR
...
→DP Problem 6
↳Instantiation Transformation
F(x, f(a, a)) -> F(f(f(a, a), a), f(a, x))
none
innermost
one new Dependency Pair is created:
F(x, f(a, a)) -> F(f(f(a, a), a), f(a, x))
F(f(f(a, a), a), f(a, a)) -> F(f(f(a, a), a), f(a, f(f(a, a), a)))