R
↳Dependency Pair Analysis
F(a, f(x, a)) -> F(a, f(f(a, a), f(a, x)))
F(a, f(x, a)) -> F(f(a, a), f(a, x))
F(a, f(x, a)) -> F(a, a)
F(a, f(x, a)) -> F(a, x)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
F(a, f(x, a)) -> F(a, x)
F(a, f(x, a)) -> F(f(a, a), f(a, x))
F(a, f(x, a)) -> F(a, f(f(a, a), f(a, x)))
f(a, f(x, a)) -> f(a, f(f(a, a), f(a, x)))
innermost
F(a, f(x, a)) -> F(f(a, a), f(a, x))
f(a, f(x, a)) -> f(a, f(f(a, a), f(a, x)))
POL(a) = 1 POL(f(x1, x2)) = 0 POL(F(x1, x2)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Narrowing Transformation
F(a, f(x, a)) -> F(a, x)
F(a, f(x, a)) -> F(a, f(f(a, a), f(a, x)))
f(a, f(x, a)) -> f(a, f(f(a, a), f(a, x)))
innermost
one new Dependency Pair is created:
F(a, f(x, a)) -> F(a, f(f(a, a), f(a, x)))
F(a, f(f(x'', a), a)) -> F(a, f(f(a, a), f(a, f(f(a, a), f(a, x'')))))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Nar
...
→DP Problem 3
↳Polynomial Ordering
F(a, f(f(x'', a), a)) -> F(a, f(f(a, a), f(a, f(f(a, a), f(a, x'')))))
F(a, f(x, a)) -> F(a, x)
f(a, f(x, a)) -> f(a, f(f(a, a), f(a, x)))
innermost
F(a, f(x, a)) -> F(a, x)
f(a, f(x, a)) -> f(a, f(f(a, a), f(a, x)))
POL(a) = 0 POL(f(x1, x2)) = 1 + x1 POL(F(x1, x2)) = x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Nar
...
→DP Problem 4
↳Remaining Obligation(s)
F(a, f(f(x'', a), a)) -> F(a, f(f(a, a), f(a, f(f(a, a), f(a, x'')))))
f(a, f(x, a)) -> f(a, f(f(a, a), f(a, x)))
innermost