R
↳Dependency Pair Analysis
F(a, f(x, a)) -> F(a, f(f(a, a), f(a, x)))
F(a, f(x, a)) -> F(f(a, a), f(a, x))
F(a, f(x, a)) -> F(a, a)
F(a, f(x, a)) -> F(a, x)
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
F(a, f(x, a)) -> F(a, x)
F(a, f(x, a)) -> F(f(a, a), f(a, x))
F(a, f(x, a)) -> F(a, f(f(a, a), f(a, x)))
f(a, f(x, a)) -> f(a, f(f(a, a), f(a, x)))
innermost
F(a, f(x, a)) -> F(f(a, a), f(a, x))
f(a, f(x, a)) -> f(a, f(f(a, a), f(a, x)))
a > f
F(x1, x2) -> x1
f(x1, x2) -> f
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Narrowing Transformation
F(a, f(x, a)) -> F(a, x)
F(a, f(x, a)) -> F(a, f(f(a, a), f(a, x)))
f(a, f(x, a)) -> f(a, f(f(a, a), f(a, x)))
innermost
one new Dependency Pair is created:
F(a, f(x, a)) -> F(a, f(f(a, a), f(a, x)))
F(a, f(f(x'', a), a)) -> F(a, f(f(a, a), f(a, f(f(a, a), f(a, x'')))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Nar
...
→DP Problem 3
↳Argument Filtering and Ordering
F(a, f(f(x'', a), a)) -> F(a, f(f(a, a), f(a, f(f(a, a), f(a, x'')))))
F(a, f(x, a)) -> F(a, x)
f(a, f(x, a)) -> f(a, f(f(a, a), f(a, x)))
innermost
F(a, f(x, a)) -> F(a, x)
f(a, f(x, a)) -> f(a, f(f(a, a), f(a, x)))
F > a
f > a
F(x1, x2) -> F(x1, x2)
f(x1, x2) -> f(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Nar
...
→DP Problem 4
↳Remaining Obligation(s)
F(a, f(f(x'', a), a)) -> F(a, f(f(a, a), f(a, f(f(a, a), f(a, x'')))))
f(a, f(x, a)) -> f(a, f(f(a, a), f(a, x)))
innermost